
CubyHum: A Fully Operational Query by Humming System

CubyHum: A Fully Operational Query by Humming System
 Steffen Pauws

Philips Research Eindhoven
Prof. Holstlaan 4 (WY21)

Eindhoven, the Netherlands
+31 40 27 45415

steffen.pauws@philips.com

ABSTRACT
'Query by humming' is an interaction concept in which the identity
of a song has to be revealed fast and orderly from a given sung
input using a large database of known melodies. In short, it tries to
detect the pitches in a sung melody and compares these pitches
with symbolic representations of the known melodies. Melodies
that are similar to the sung pitches are retrieved. Approximate
pattern matching in the melody comparison process compensates
for the errors in the sung melody by using classical dynamic
programming. A filtering method is used to save computation in
the dynamic programming framework. This paper presents the
algorithms for pitch detection, note onset detection, quantization,
melody encoding and approximate pattern matching as they have
been implemented in the CubyHum software system. Since
human reproduction of melodies is imperfect, findings from an
experimental singing study were a crucial input to the
development of the algorithms. Future research should pay special
attention to the reliable detection of note onsets in any preferred
singing style. In addition, research on index methods and fast bit-
parallelism algorithms for approximate pattern matching need to
be further pursued to decrease computational requirements when
dealing with large melody databases.

1. INTRODUCTION
Typically, people listen to music separately from gaining
knowledge about the name of the performer, the composer or the
title of the song. Because song titles and melodies are not learnt
associatively, recalling a song title from a given melody or vice
versa is notoriously difficult [14]. Obviously, it is hard to find
music without knowing it by heart. The interaction concept of
‘query by humming’ makes it possible to retrieve a song when the
user ponders a catchy tune without being able to name the song. It
allows the user to sing any melodic passage of a song, while the
system seeks the song containing that melody fast and orderly
[6][11].
The current implementation of ‘query by humming’ in the
CubyHum software system is a linked combination of speech
signal processing, music processing and approximate pattern
matching guided by empirical findings from singing experiments.
Its algorithmic organization is illustrated in Figure 1 and forms the
guide to this paper. ‘Query by humming’ requires symbolic
representations of the song melodies consisting of a sequence of
musical notes (e.g., their pitch names) and the time onset and
offset of each note.
First, the pitch is estimated from the singing by a technique called
sub-harmonic summation (SHS). In short time frames, SHS
computes the sum of harmonically compressed spectra. In

principle, the maximum sum result is chosen as the pitch estimate
in that time frame.
Second, musical events and timing information are detected in the
singing such as note onsets, gliding tones and inter-onset-
intervals. Standard signal processing techniques using short-time
energy, pitch level shifts and amplitude envelopes are used for
finding note onsets.

Figure 1. The algorithmic framework of ‘query by humming’
as implemented in CubyHum.

Both the pitch and timing information are combined and quantized
into musical notes and durations. Note quantization is based on
the tuning and scale standards in Western music. This
quantization transforms the singing input into its formal musical
notation. From this musical score, a melody can be synthesized for
auditory feedback by using standard MIDI1 technologies.
Since people are inaccurate in remembering and reproducing a
melody, a melody representation and comparison process are
devised that are largely invariant to key, tempo and ornamentation
(i.e., adding and leaving out notes). First, not the absolute musical
pitches, but the intervals between notes are used, as they are
insensitive to key. In particular, nine interval classes are defined
that represent different interval sizes. Large intervals (i.e., larger
that 6 semitones) are not further distinguished since they are hard
to sing and occur rarely in musical melodies from all over the

1 MIDI stands for Musical Instrument Digital Interface, which is a
standard format to exchange music performance data between
music synthesizers and sequencers.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page.
© 2002 IRCAM – Centre Pompidou

CubyHum: A Fully Operational Query by Humming System

world. Likewise, duration ratios are used between successive
notes, as they are insensitive to tempo.
Approximate pattern matching techniques allow the detection of
patterns in tunes that are transformed and distorted in various
ways. For that, we have defined a distance between any two
variable-length melodies that depends on interval sizes and
duration ratios. In general, it comes down to the search of an
optimal alignment between melodies by minimizing the number of
changes that are needed to transform one melody into another.
This problem can be easily solved in a dynamic programming
framework. However, classical dynamic programming is
impractical in terms of running time performance for large melody
databases. Therefore, a filter mechanism has been implemented
that quickly discards passages in the melody database that cannot
contain an approximate match.

2. THE ART OF SINGING
It is obvious that people have imperfect memories for melodies or
may lack any formal singing practice. Unfortunately, the literature
does not provide clear-cut insights into the singing performance of
the general public, the long-term memory and recollection of
melodies and how these issues relate to experienced singers and
real-world song material. This knowledge is indispensable for the
development of ‘query by humming’ algorithms. Hereunder, we
summarize some of our findings of an experiment that examined
the effects of singing experience, song familiarity and recent song
exposure on singing popular rock song melodies2 from memory.
These findings were a crucial input to the development of the
algorithms for ‘query by humming’.
People sing any part of the melody. A repetitive melodic passage
in a song may represent the 'hook-line' of a song that 'gets stuck in
people's head'.
People sing at the wrong key. In our study, people chose a
random pitch to start their singing. Only for their most favorite
songs, people are thought to have a latent ability of absolute pitch
[8].
People sing at a reasonably correct global tempo. In our study,
people knew or had a feeling, by previous hearings, what the
correct tempo would be and were able to approach this tempo
reasonably accurately.
People sing too many or too few notes. Human memory is
imperfect to recall all pitches in the right order. In our study,
people sang just the line they remembered. They also added all
kinds of ornaments (e.g., grace notes, filler notes, or thinner notes)
to beautify their singing or to ease the muscular motor processes
involved in singing.
People sing the wrong intervals or confuse some with others.
From our study, people sang about 59% of the intervals correctly,
though there were differences due to singing experience, song
familiarity and recent song exposure. Interval confusion seems to
be symmetric; interchanging an interval with another was found to
be equally likely as the other way around. A large interval (thirds
and larger) tends to be more easily interchanged for another.
People sing the contour reasonably accurately. In our study,
people largely knew when to go up and when to go down in pitch
when singing; they did that correctly in 80% of the times.
People with singing experience sing better on some aspects
than people without singing experience do. In our study, the
non-experienced and experienced singers did not differ in singing
the contour of a melody accurately. However, experienced singers

2 Twelve songs of the Beatles were used as experimental data.

reproduced proportionally more correct intervals and sang at a
better timing.
People sing familiar melodies better than less familiar ones. In
our study, less familiar melodies were reproduced with fewer
notes and had proportionally fewer correct intervals than familiar
melodies. Also, both experienced and non-experienced singers
improved their singing of intervals when they had heard the
melody very recently.

3. PITCH DETECTION
Pitch is a percept that is defined as the characteristic of a sound
that gives the sensation of being high or being low. For a complex
tone (as the human voice), the pitch corresponds mainly with the
fundamental frequency of the signal. However, the correlation
between sound frequency and pitch is not perfect, since pitch
perception is influenced by the intensity, the duration, the
surrounding sounds and the harmonics of the sound. Accurate
pitch detection algorithms for normal speech have been
developed, under the assumption that the voice has been well
recorded under controlled conditions.
Typical pitch in normal conversational speech is in the range of
110 Hz in the male, 220 Hz in the female and 300 Hz in the child
and may vary within one octave. When considering all voices and
registers, singing extends from 80 Hz (the 2(of a bass singer) to
1400 Hz (the 6& of a soprano singer) and may vary over two-and-
a-half octaves. We expect the pitch range for humming to lie in
the first one-and-a-half octave of the normal singing range. On the
other hand, whistling extends from 700 Hz to 2800 Hz; the lowest
whistling tone of person comes near to the person’s highest
reachable sung note.
We use the sub-harmonic summation (SHS) method [7] to
estimate the pitch in the singing. This method stems from the
theory that each spectral component (i.e., spectral peak)
contributes to the perception of a pitch that corresponds to the
frequency of the component. Also, elements that have a lower
harmonic relationship with this component (i.e., that have an
integral factor in frequency) contribute to the perception of a
pitch, taking into account that higher components contribute less
than lower components do. All these contributions add up in a
sub-harmonic summation. The maximum of this sum result is the
estimate of the pitch. Even when a fundamental frequency (i.e.,
the first harmonic) is missing in the signal, while other harmonics
are present, this mechanism creates a (virtual) pitch of about that
typically produced by that fundamental. Virtual pitch is common
in human perception. The algorithm has been implemented as
outlined in the original paper [7].
The algorithm can be explained by a single expression,

�ORJ��ORJ��� ��
�

� QV6QV:KV+
1

Q

Q ++= ∑
=

− (1)

where IV ORJ�= denotes the logarithmic frequency, ��V+

represents the sub-harmonic sum spectrum, N (e.g., 15) denotes
the number of harmonics, Q is the compression rank, h (e.g.,
0.84) denotes the decreasing factor, ��V: is an arc-tangent
function representing the transfer function of the auditory
sensitivity filter, and �ORJ� � QV6 + denotes the compressed
amplitude spectrum representation. When a spectrum is
compressed, its frequency axis is squeezed by an integral factor,
the compression rank n, and consequently its peaks come closer to
each other. A pitch estimate is then the value of VI �= for which

��V+ is the maximum.

CubyHum: A Fully Operational Query by Humming System

Robust pitch estimation is difficult when relying on a single
frame; octave errors or other erratic pitch estimates for ‘creaky’
and ‘hoarse’ voices are hard to circumvent without taking the
necessary precautions. Since the sub-harmonic sum spectrum
provides an array of pitch estimate candidates, a post-processing
procedure is used to smooth the pitch contour. For that, we use a
dynamic programming framework in which sudden pitch jumps
larger than 50 Hz are prohibited by interchanging a deviant
absolute maximum by one of the relative maximums in the sub-
harmonic sum spectrum.

4. EVENT DETECTION
Once the continuous pitches have been identified, the time
locations at which a note starts (the onset time) and ends (the
offset time) have to be found. To date, no algorithm has been
developed that reliably detects the wide range of possible note
onsets in performance data from different singing styles. For the
current purpose, note onsets are defined as vowel onsets.
Consequently, the singing is assumed to consist of short, relatively
isolated syllables, preferably comprising a lengthened unvoiced
fricative and a long mid vowel (e.g., /fa/-/fa/-/fa/). Note onsets are
then characterized by an abrupt rise in energy over a broad
frequency range. The sustained note has a relatively steady
spectral shape representing the formants of the vowel used.
Though note offsets can be identified to some extent by the fall of
energy in especially the higher frequencies, they are less clearly
defined. This is due to the exponential decay of the amplitude of a
note making a note already inaudible while it is still physically
present.
We have linked several standard signal processing techniques to
detect the rise and fall of energy in different frequencies to
segment the signal into note onset and offset times. First, the
short-term energy method is used to detect silent parts in the
singing. Subsequently, each non-silent part is provided to the
other three methods in succession. We assume a digital signal

��Q[, for ���� −= 1Q � that is pre-emphasized by the filter
�95.01 −− z to produce a 32 dB boost in the spectral magnitude,

blocked into frames.

4.1 Short-term energy method
The short-term energy method is a straightforward method to
detect note onsets and offsets and to distinguish singing from
silence. For that, the signal is blocked into non-overlapping
frames of 10 ms.

The short-term energy k(in frame k is estimated by

∑
=

=
1

Q

N Q[(
�

��� (2)

The short-time energy is normalized by a maximum short-term
energy found in a running window of the signal. Adaptive
threshold values are used to determine note onsets and note
offsets, in which the note onset threshold (e.g., 0.02) is defined to
be higher than the note offset threshold (e.g., 0.01). This is done
to avoid an on-off oscillation of a marginal signal (e.g., a weak
fricative). First, the procedure looks for the first note onset to be
detected. If the short-time energy exceeds the onset threshold, a
note onset is detected. If, after a note onset has been detected, the
short-time energy falls below the offset threshold, a note offset is
detected.

4.2 Surf method
The Surf onset detection algorithm has been adopted from the
techniques of Schloss [17]. The signal is passed through a first-

Figure 2. The waveform produced by a male person singing
the first melody line of the Beatles’ song ‘Yesterday’ of 12

notes by using the syllables ‘na-na’. The short-term energy
method indicates regions of silence and singing for isolated

notes; it detects 9 note onsets. The Surf method indicates the
same 9 note onsets by looking at the positive zero-crossings in

the surf contour. The high-frequency content method can
detect all 12 note onsets by peak picking; there are some

spurious peaks that can result in ‘false alarms’. The pitch
method can detect gliding note onsets by looking how the pitch

contour fluctuates over time.

order high pass filter and blocked into frames of 20 ms, with a
frame shift of 10 ms. The frames are used to compute a smoothed
amplitude envelope of the signal that represents the higher
frequencies. This envelope ��N\ is made out of the sequence of
average absolute values of the signal within each frame k. The
slope of the envelope is found by a polynomial fitting procedure
[15]. For that, the envelope sequence is fitted with a second-order
polynomial over a M-point segment of the sequence. We denote a
small finite envelope sequence around sample τ by

{ }0 0Wty −=+)(τ , where M specifies the width of the polynomial
interpolation. This small segment is fitted by a second-order
polynomial �ctbta ++ by minimizing some fitting error.

A polynomial approximation of the slope at τ is then given by

∑ ∑−=
−=

+⋅=≅
∂

+∂ 0

0W
0

0W
t

tytb
t

ty
�

)()(ττ (3)

We compute a 5-point approximation; M is fixed at 2. At the
edges of the envelope sequence, no slope computation is done.
Since a note onset is characterized by an abrupt rise of higher
frequencies of the signal, we looked at positive zero-crossings of
the slope contour to find these onset times.

4.3 High-frequency content method
The high-frequency content method has been adopted from Masri
and Bateman [9]. It aims at revealing both changes in overall
energy and the energy concentration at higher frequencies. The

CubyHum: A Fully Operational Query by Humming System

signal is blocked and Hanning-windowed into frames
���� −= .N � of 20 ms, with a frame shift of 10 ms.

A M-point FFT is used to produce a short-time DFT ��P; k . The
short-time energy k(in frame k is computed as the sum of the
squared magnitude of each FFT bin,

∑
+

=

=
���

�

�

)(
0

PP

NN mXE (4)

where 0P denotes the lowest FFT bin that is taken into account.
Only the FFT bins are considered that fall within a frequency band
of 400 Hz and higher.

The short-time higher frequency content k+ in frame k is a
weighted version of k(, linearly biased to the higher frequencies,

∑
+

=

⋅=
���

�

�

)(
0

PP

NN mXmH (5)

A detection function is computed that combines each pair of
consecutive frames; it is the product of the rise in high frequency
energy between two frames and the current normalized high
frequency content,

N

N

N

N
N E

H
H
HD ⋅=

−�
(6)

The first ratio represents the rise in high frequency content. The
second ratio represents the normalized high frequency content for
the current frame k. Their product (i.e., k') peaks prominently at
abrupt increase in high frequency energy content. If it surpasses a
given threshold, we say that the detection function has found a
note onset.

4.4 Pitch method
The pitch method is a way to segment gliding notes into note
onset and offset times. Essentially, it groups and averages the
pitches as found in 40 ms frames in different windows on a frame-
by-frame basis. For this, we use a growing window of frames for
which it has been concluded that they contain similar pitches. The
growing window maintains the pitch of a current note. A second
window of fixed size is placed at the end of the growing window.
The median pitch is computed for both windows. If the median
pitch of the fixed-size window falls within 100 cents (a semitone)
of the median pitch of the growing window, the growing window
is extended with one frame and, consequently, the window of
fixed size is moved one frame; the computation starts over again.
If, however, the median pitch of the fixed-size window equals or
differs more than 100 cents (a semitone) from the median pitch of
the growing window, it is concluded that the position of the fixed-
size window notifies the start of a new note.
The offset time of the current note and the onset time of the new
note are determined by the starting frame of the window of fixed
size. Now, the window of fixed size is the growing window and a
new window of fixed size is placed at the end of it; the
computation starts over again.
The minimal length of any window is determined at 3 pitch frames
(120 ms), which also determines the minimal duration of a gliding
note. Finding note onset and offset times on the basis of a
changing pitch has the advantage that the user has some freedom
in singing: notes do not need to be sung in an isolated manner but
can be 'thread together'. However, a gliding note (or glissando) is

segmented into a step-wise sequence of ascending or descending
notes of 120 ms each.

5. QUANTIZATION
Quantization means the division of the pitch (tone) and time
continuum into discrete steps. These steps are necessary to decide
exactly how much the pitch has changed or what temporal units
have elapsed. Time quantization is not further discussed, since
quantized duration is not used in the melody comparison. Instead,
the inter-onset-interval (IOI) is used, which is the time difference
between two adjacent note onsets.
To arrive at a discrete musical pitch, a pitch center of a continuous
pitch contour within a time interval is required. This pitch center
should be the pitch perceived by the listener and correspond to the
target pitch the singer intended to produce. Although there is
ample evidence that the discrete pitch perceived in a pitch contour
is that of the mean [2], the use of a mean is sensitive to octave
errors or other deviant pitch estimates (e.g., due to vibrato, pitch
overshooting or undershooting). We use the median pitch instead.
If the contour is error free, the median and mean pitch in a time
interval are reasonably close.
The median pitch between a note onset and offset is used to
quantize the musical pitch value for each note using the equally
tempered musical scale tuned at +]$ ���4 = (A-440). Musical
pitch is represented in categories along scales in terms of
semitones and cents. These categories are relative measures based
on frequency ratios. Knowing that an octave is a frequency ratio of
2:1, the semitone is one-twelfth of an octave (1.059462�� ≈) and
a cent is 1/100 of a semitone. Now, notes on the equally tempered
scale relative to A-440 occur at multiples of 100 cents; they can be
expressed as a distance in cents from 8.176 Hz and have a total
order. For instance, the middle C (+]& ������4 =) is 6000 cents
(or there about). To calculate the discrete musical pitch p of a
median pitch f, we use the frequency ratio ������I5 = and

 ���ORJ�� 2 +⋅= 5S (7)
The musical pitch is then represented by an integer value; its
corresponding pitch label is indexed in an array. By allowing an
integer range between 0 and 127, we have essentially the MIDI
convention to encode musical pitch.
Singing is inevitably contained with deviations and changes from
the universal tuning standard at A-440. For instance, people tend
to fall or rise in pitch (and key, consequently) due to large interval
sizes, fatigue and inaccuracies in muscular control. To compensate
for this, the tuning standard is adapted to the singing in due
course. For the first note sung, it is assumed that singing starts at
the universal tuning standard. For each next note, the (closest)
musical pitch is calculated and the cent difference between the
pitch sung and the musical pitch is computed. Using an inverse
variant of Equation 7, the reference pitch (which is at 8.176 Hz, at
first) is adapted, which changes all musical pitches relative to this
reference pitch.

6. MELODY REPRESENTATION
A melody representation that is invariant to key is an interval
representation, that is, the sequence of distances between two
succeeding notes expressed in semitones. In particular, a melody
sequence NVVV6 �21= comprising absolute pitches is

transformed in a sequence)())((�����

−−−−⋅= 11 ssssssS � ,
where the dot ‘ ⋅ ’ represents a special start element since no
interval is associated with the first note in a melody.
In order to transcend from mode and to use a diatonic scale
structure, intervals are grouped together. This has to be done

CubyHum: A Fully Operational Query by Humming System

without knowledge about the tonic since we do not know the key
of the melody. Except for the unison, all intervals are categorized
in groups of two intervals of 1 to 2 semitones. In addition, all
intervals larger than 6 semitones are grouped in a single category
for ascending and descending intervals. It is well-known that
intervals larger than 5 semitones and greater are rare (only 10%)
in musical melodies from all over the world [5]. In addition, large
intervals are difficult to sing accurately.
As shown in Table 1, the interval categories are represented by the
integers ������� �−− . The special start element ‘ ⋅ ’ is maintained.
The resulting melody representation is a 9-step contour and
resembles the Dowling model of how melodies are assumed to be
stored in human memory [4]. Temporal information is kept by
storing the real value of the inter-onset-interval (IOI) of each note
to each corresponding 9-step contour element.
Invariance to global tempo is established by calculating the ratios
of two IOIs, but this is done in the melody comparison.

Table 1. The 9-step melody representation (st = semitone).
interval name interval size integer code

desc. dim. fifth and greater < -6 st -4

desc. perfect/augm. fourth -5 or –6 st -3

desc. minor/major third -3 or –4 st -2

desc. minor/major second -1 or –2 st -1

unison 0 st 0

asc. minor/major second 1 or 2 st 1

asc. minor/major third 3 or 4 st 2

asc. perfect/augm. fourth 5 or 6 st 3

asc. dim. fifth and greater > 6 st 4

7. MELODY COMPARISON
The art of melody comparison is finding approximate similarities
between finite sequences of elements drawn from a finite alphabet,
though the sequences have different lengths. In our case, one
sequence is a relatively small pattern and a second sequence that
has a longer length. The former sequence represent a transcription
of what has been sung; the latter sequence represent a melody
from the database. This sequence can also be interpreted as a
concatenation of all melodies in the database. The pivot is
defining an appropriate similarity metric (or distance measure) for
melodic sequences that (1) assigns different costs to different local
dissimilarities, (2) meets some invariance principles and (3) is
‘psychologically plausible’; it should provide an orderly
representation of the melodies that fits human expectation and
music theory.

7.1 Notation
We adopt the following notation for comparing melodic
sequences: let ∗Σ∈= 0qqqQ ��� be a query pattern sequence of

length 04 = and ∗Σ∈= 1sssS ��� a sequence of length

16 = . Σ is a finite alphabet of pitch intervals. Here, we use the

9-step alphabet { }4,3,3,4� �−−=Σ −VWHS .

We denote Ms as the j-th element of S for an integer

{ }1M ����∈ . We denote MLML ssS �� = as a subsequence (or
factor) of S, which is the empty subsequence ε if ji > . The

prefixes of S are the 1+N subsequences MM ssS �� �� = for

Nj ≤≤0 . Likewise, the suffixes of S are 1M1M ssS �� = for

11 +≤≤ Nj . In addition, we define a tabular function S/ ,
which is specific to the sequence S, that provides the IOI for a
given j-th element of S. In particular, MM6 tsL =:)(, where Mt is the

IOI for Ms .

7.2 Typical problem instances
The performance of an approximate pattern matching algorithm
depends on the length of the query pattern sequence M, the size of
the longer sequence N, the size of the melody database, the size of
the alphabet σ=Σ , the number of differences allowed k and
consequently the error level =α k / M.

Practical problem instances for our melody comparison can be
described by the following parameters.

• The query pattern sequence Q has a typical length M of a
dozen elements. For instance, singing the first phrase of the
Beatles' song 'Yesterday' amounts to singing 12 notes (or 11
intervals).

• The melodic sequence S has a typical length N of a few
hundred elements. The vocal melody of a popular rock song
has about 300 notes.

• The melody database can be as small as a few hundreds (for
small-scale applications) and thousands and thousands (for
full-scale applications).

• The alphabet VWHS−Σ� has 9 elements. These elements are
integers representing interval categories having total order.

• In our singing experiment, we found that the percentage of
errors allowed is in the range of 20-40%.

7.3 Edit distance
The traditional way to compare two sequences is to allow
particular differences (or errors) of elements to occur in the
sequences while computing their distance, denoted as

+∗∗ ℜ→Σ×Σ �:ed . Thus, ��� 64HG represents the distance
between 4 and S . The type of differences can be deletions,
insertions and replacements of single elements that are necessary
to transform one sequence into the other. A cost (or penalty) is
associated with each transformation (or difference). A cost may be
a constant (e.g., a unit cost for each transformation) or any value
function that computes the difference between two elements in its
context. By choosing appropriate costs, one can select those
approximate matches that make sense in a particular domain and
reject other which do not. When we restrict the costs to be unit,
the match will be based on the unit-cost edit distance, that is, the
minimal number of deletions, insertions and replacements to
transform the sequence Q into the sequence S [20].
The unit-cost edit distance model can be used in two different
ways.
1. Minimal distance problem. Finding an approximate match

between Q and S that has minimal edit distance.
2. k-difference problem. Finding an approximate match (or all

approximate matches) in S that has (or have) at most +ℵ∈ Rk
different elements with Q (i.e., at most an edit distance of k
with Q).

CubyHum: A Fully Operational Query by Humming System

The computation of the edit distance can be easily solved by using
classical dynamical programming for sequences of the same length
[20] and for sequences of different lengths [17].

7.4 Local melody differences
The edit distance model works fine for textual sequences and for
melody representations that abstract from tonal and timing
structures such as a contour representation. For melodies decoded
in VWHS−Σ� and with timing information, we have to account for
other types of differences and their effects.
Hereunder, we enumerate the most important local differences
between melodies. The ones that have to do with musical pitch are
shown in Figure 3. Some of these differences (or human errors in
melody reproduction) have already been discussed in Section 2.

Figure 3. Typical local differences between melodies.
Underneath each musical staff, the interval sizes in semitones

are shown, not the interval categories from VWHS−Σ� .
1. Melodic sequences of variable length: the singing of any part

of a melody.
2. Amount of mistuning: the singing of an interval a little too

sharp or flat should not be as bad as singing it far too sharply
or flat.

3. Modulation by interval replacement: the singing of a wrong
interval may result in a key modulation of the whole
succeeding melody line.

4. Note replacement: replacing one note for another note has
implications for the interval representation of the melody.
The interval associated with the replaced note changes by a
certain number of semitones, which is compensated by the
very next interval.

5. Note insertion: the singing of an additional note (a filler or
grace note) has implications for the interval representation of
the melody. The sum of the sizes of the two new intervals
introduced by the inserted note equals the size of the original
interval.

6. Note deletion: forgetting to sing or missing a particular note
(a thinner note) has implications for the interval
representation of the melody. The size of the new interval
due to the deleted note equals the sum of the sizes of the two
original intervals.

7. Other note and interval insertions and deletions: some
insertions and deletions of small melodic fragments cannot be
accounted by some of the above-mentioned schemes. For
instance, short melody lines can be added or deleted.

8. Duration error: the lengthening or shortening of a note
without changing global tempo.

In addition to these local melody differences, one might think
about the concepts of consolidation and fragmentation as

introduced by Mongeau and Sankoff [12]. A consolidation
represents the replacement of several notes at the same pitch by a
single note at that pitch. Likewise, a fragmentation represents the
replacement of a single note by several ones at the same pitch. If
these sequence differences were interpreted by a series of single
insertions and deletions, it would cost more than counting them as
a single transformation. However, these concepts occurred rarely
in the singing data of the experiment and are computationally
intensive. Therefore, we found them not in proportion to their
added benefit.

7.5 Dynamic programming solution
Similar to the edit distance model, the classical dynamical
programming approach to compute the melody distance ��� 64'
between two melodic sequences MTTT4 �21= and

NVVV6 �21= is done by filling a matrix)(��� 10D �� . The

entry MLD � holds the minimal melody distance between the two

prefixes i4�1 and MS �� . The algorithm to construct the matrix is
done by using the following recurrent formula




























⋅++

>+=

+
−⋅++

−⋅+−+

>=+

−
+

⋅++

⋅++

=

−
−

−

−

−

−
−−

−−
−−

−

−−

−
−−

−
−

insertion)(interval
)(

)(
1

insertion)(note2,if

,
)(

)()(
)(

)(
1

(8)error)noor n (modulatio

)(
)(

)(
)(
deletion)(note2,if

,
)(

)(
)(

)()(
1

deletion)(interval
)(

)(
1

min

�
��

�

�

�

�
���

��
���

�

��

�
���

�
��

�

M6

M6
ML

MML

M6

M6M6

L4

L4
ML

M6

M6

L4

L4
MLML

MLL

M6

M6

L4

L4L4
ML

L4

L4
ML

ML

sL
sL

KD

jssq
sL

sLsL
qL
qL

KD

sL
sL

qL
qL

KsqCD

isqq
sL
sL

qL
qLqL

KD

qL
qL

KD

D σ

where �� =Σ= −VWHSσ denotes the size of the alphabet, and C

and K denote constants that have to be determined empirically.
We use C = 1 and 2.0=K .

The following set of initial boundary conditions and special cases
is used

0
0

)(
)(

1

1
0

�����

��

�����

�
�����

���

������

==
=

=

⋅++=

=
==

−

−

−
−

MM

M

LL

L4

L4
LL

DD
D

DD
qL
qL

KDD

D
DD

(9)

The rationale of the recurrent formulae is, first, that pitch intervals
between melodies are penalized by their absolute difference,

ML VT − . If the pitch intervals are equal, there is no interval cost.

If they are not equal, we speak about an interval replacement that
may result in a modulation (key-change) of one melody in
comparison to the other. The interval cost is normalized by the
size of the alphabet so that it will never reach a cost of 1 or higher.
Additional to this interval cost, there is a durational cost expressed

CubyHum: A Fully Operational Query by Humming System

by the absolute difference of duration ratios. The constant K
represents the relative contribution of duration differences versus
that of interval differences. A note replacement is not explicitly
accounted for, but it can be interpreted as two modulations in
series since it involves two succeeding intervals.

Second, if MLL sqq =+−� or MML ssq += −� , we speak of a note
insertion or note deletion, respectively. Recall that a note
insertions or deletions have special implications for the underlying
intervals, expressed by the conditional summations. An interval
cost of 1 is associated with these differences. The durational cost
penalizes longer durations of inserted or deleted notes more than
smaller durations; it thus favors grace notes for thinner and filler
notes. In principle, the concepts fragmentation and consolidation
can be worked out using the same scheme.
The two remaining differences are the insertions and deletions that
cannot be accounted for by the other schemes. Their costs are 1
plus a varying durational cost. The duration cost is based on the
motivation that the deletion of an interval can be seen as replacing
a note with a nullified note of zero-length. Likewise, an interval
insertion is similar to replacing a zero-length note with a note of a
non-zero length.
The initial boundary conditions and special cases look rather
complicated because (1) they express the possible start of Q at any
position in S, (2) the fact that the used duration ratios do not exist
at the very start of a sequence and (3) the fact that the sequences
start with a special start symbol.

The filling of the matrix)(��� 10D �� starts at ���D and ends at

10D � in either a column-wise top-to-bottom manner or a row-
wise left-to-right manner. By keeping track of each local
minimization decision in the matrix in a pointer structure, one can
reveal the optimal alignment between P and a subsequence of S.
The entry in the column)(�� 10D � holding the minimal distance
value refers to the end of an optimal alignment. By tracing back
the pointers, one can recover all local minimization decisions in
reverse order that resulted in this minimal value and, hence, the
starting point of the optimal alignment. Likewise, one can find
multiple optimal alignments, if there are several. Or, one can find
the alignments (and positions) that have a distance that is lower
than a pre-defined threshold.
Since we have to compute all entries of the matrix and the
computation of each entry MLD � is a constant factor, the worst and

average case time complexity is still �� 10 ⋅Ο . Note that this
computation has to be done for each melody in the database. A
significant reduction in practical computing time without loss of
performance can be obtained by leaving out the recurrent
expressions for note insertion and deletion.
In principle, if we compute the matrix column-wise or row-wise,
only the current column (or row) and the previous two need to be
stored; only ��PLQ�� 10⋅ cells are required. Since NM < , the
space required is ��0Ο .

7.6 An index method: Filtering
Chances are small that a query pattern Q has a high approximate
melodic similarity with many melodic passages S in the database.
Leaving out subsequences in S that cannot have a sufficiently high
similarity with Q saves the computation of complete columns in
the dynamic programming matrix used to evaluate Equations (8)
and (9). Index methods quickly retrieve parts in S that might be
highly similar to Q. When these parts in S are identified, they still
need to be evaluated by using Equation (8) and (9) to ensure
whether or not they really match with Q.

Current index methods are based on the k-difference problem
between 4 and S using the unit-cost edit distance model. One of
these index methods is known as ‘filtering’: parts in S that meet a
well-defined necessary (but not sufficient) ‘filtration’ condition
with respect to Q and a pre-defined error level =α k / M are
candidate for further evaluation; all other subsequences are
discarded. It is conceivable that discarded parts in S can still have
a high melodic similarity with Q, as the filtering is based on the
edit distance. To alleviate this discrepancy, the error level has to
be set appropriately.
The used filtering method is the Chang and Lawler’s LET (Linear
Expected Time) algorithm [3]. It discards a subsequence of
S when it can be inferred that it does not contain an approximate
match with 4 . This can be done by observing that a region in S
having a k-approximate match with a pattern Q of length M is at
least of length M - k and is a concatenation of at most 1+k
longest subsequences of Q with intervening (non-matching)
elements. So, the 'filtration' condition says that any subsequence
in S of 1+k concatenated longest subsequences of Q that is
shorter than M - k can be discarded. The remaining subsequences
are further evaluated using Equation (8) and (9).
The algorithm uses a suffix tree on Q to determine in linear time
the longest subsequences of Q in S. A suffix tree on a sequence Q
is a special data structure that forms an ordered representation of
all suffixes of Q. A suffix tree can be built in linear ��0Ο time
and needs ��0Ο space [10][18].

The algorithm works by traversing S in a linear fashion (from left
to right) and maintains the longest subsequence of Q at each
element in S using the suffix tree on Q. When this subsequence
cannot be extended any further, it starts a new subsequence of Q at
the next element. Note that there is an intervening element defined
between any two longest subsequences of Q in S. These elements
are called markers in S.
The result is a partitioning of S that consists of the longest
subsequences of Q intervened by markers. Subsequences in S are
discarded, if they are a concatenation of 1+k longest
subsequences of Q (with k markers) of a length that is shorter than

kM − .

An additional result of the partitioning of S with respect to P is the
number of markers in S. This quantity is also known as the
maximal matches distance between S and P. This distance has
been proven to be a lower bound for the unit-cost edit distance
[19].

Example. Let =4 abcba (5=M) and =S adaaabdbadbbb
(13=N). The partition of S as a concatenation of longest
subsequences of Q intervened by markers is a-a-ab-ba-b-b, since
a, ab, ba and b are all (longest) subsequences of Q in S. The
markers have been omitted at positions 2, 4, 7, 10 and 12 in S. The
maximal matches distance between P and S equals 5. By
allowing 1=k difference, the regions a-a and b-b are discarded
since they are of length 3 < M – k = 4. On the other hand, the
regions a-ab, ab-ba and ba-b need to be further evaluated since
their lengths are kM − .

7.6.1 Heuristic adjustments
Filtering methods are judged on their correctness, their time
complexity and their filtration efficiency.
1. Correctness. The LET algorithm has been proven to

correctly solve the k-difference problem, that is, it does not
miss any approximate matches in S in edit distance sense.

CubyHum: A Fully Operational Query by Humming System

However, regions in S that are filtered out by LET can still be
similar to Q in our melody distance sense.

2. Time complexity. The identification of candidate regions in
S happens in linear time ��1Ο by using a suffix tree on Q.

3. Filtration efficiency. The efficiency relates to the number of
elements that can be discarded by the filter. Filtering works
well on low error levels and bad or not at all on higher error
levels; the filtration efficiency drops very quickly at a
particular error level.

By using the maximal matches distance between a region in S and
Q as a lower bound for their edit distance, we can further rule out
regions in S on an heuristic basis by recognizing that S can have
repetitive subsequences. Repetition in a melodic sequence is
common; a melody can contain similar passages referring to the
tune of the chorus or the individual phrases of a stanza.
We use two rule-out methods aiming at increasing the filter
efficiency at a given error level. The heuristic is based on the
observation that a region in S does not need to be evaluated again,
if a similar one has already been evaluated.
1. LET-H1: all non-overlapping regions in S with equal

maximal matches distances normalized by the length of the
region to Q are maintained. From this set, only one region is
subjected to further evaluation; all others are discarded.

2. LET-H2: only the region in S with the minimal maximal
matches distance normalized by the length of the region to Q
is chosen for further evaluation; all others are discarded.

It must be emphasized that these heuristic extensions make the
filter no longer working correctly, since approximate matches in S
are discarded on purpose. To find a balance in correctness
(heuristic) level, filtration efficiency and melody comparison
performance, we empirically set 25.0=α while using method
LET-H1. As shown in Section 7.6.2, this provides us a 64% to
89% reduction in computing columns during dynamic
programming for pattern sequences Q with a length of 12. In
practice, the LET algorithm was found to be too permissive in
providing still too many similar regions for further evaluation. In
contrast, LET-H2 was found to be far too stringent by discarding
relevant regions. Some regions in S that were discarded by LET-
H2 turned out to have a high melodic similarity with Q.

7.6.2 Filtering experiment
In order to assess the filtration efficiency of the three filtering
methods for typical problem instances, we conducted experiments
with a varying error level α using a database with 510 popular
melodies3, each containing 285 notes on average. The filtering
methods were LET, LET-H1 and LET-H2. All sequences were
made out of our alphabet VWHS��Σ of 9 interval elements. The
patterns Q were constructed with varying lengths (M = 10, 12,
14). They were either randomly chosen excerpts from the database
(the melodic sequences) or randomly compiled from the alphabet
(the random sequences).
A measure for filtration efficiency is the number of elements that
are discarded divided by the total number of elements,

1
11

HIILFLHQF\�ILOWUDWLRQ H−
= (10)

3 The melody database contained 510 vocal monophonic melodies
from songs of the Beatles (185), ABBA (73), the Rolling Stones
(67), Madonna (38), David Bowie (34), U2 (33), Prince (23),
Michael Jackson (20), Frank Sinatra (20) and the Police (17).

where N denotes the total number of elements and e1 denotes the
number of elements that need further evaluation. In order to
decrease random variations, we have determined the averages of
250 independent runs with different patterns.
The results are shown in Table 2. The random sequences are more
stringently filtered since they show little resemblance with the
structure in popular melodies. It is clear that the filtration
efficiency of LET has a steep drop at an error level α between
0.2 and 0.3. The use of the heuristics in LET-H1 and LET-H2
boosted the filter efficiency at each error level. An error level α
of 0.25 is an appropriate parameter value when using one of the
filter approaches.
Table 2. Filtration efficiency simulated for different parameters
of a problem instance (�� =Σ −VWHS). Parameter combinations

that resulted in zero filtration efficiency are not shown.
M k α Melodic sequences Random sequences

 LET LET-
H1

LET-
H2 LET LET-

H1
LET-
H2

10 1 0.10 0.99 1.00 1.00 1.00 1.00 1.00

 2 0.20 0.81 0.90 0.97 0.97 0.98 0.99

 3 0.30 0.22 0.37 0.76 0.35 0.49 0.85

 4 0.40 0.03 0.06 0.24 0.04 0.07 0.26

12 1 0.08 1.00 1.00 1.00 1.00 1.00 1.00

 2 0.17 0.93 0.96 0.98 1.00 1.00 1.00

 3 0.25 0.53 0.64 0.89 0.81 0.89 0.96

 4 0.33 0.11 0.16 0.45 0.14 0.23 0.52

 5 0.42 0.02 0.04 0.13 0.02 0.03 0.12

14 1 0.07 1.00 1.00 1.00 1.00 1.00 1.00

 2 0.14 0.98 0.99 0.99 1.00 1.00 1.00

 3 0.21 0.77 0.83 0.94 0.96 0.97 0.99

 4 0.28 0.28 0.38 0.70 0.45 0.58 0.86

 5 0.36 0.06 0.08 0.24 0.06 0.08 0.25

8. CONCLUSIONS
CubyHum is a software system in which ‘query by humming’ is
realized by linking algorithms from various fields: speech signal
processing, music processing and approximate pattern matching.
Empirical findings from singing experiments were a crucial input
to the development of these algorithms. In short, it tries to detect
the pitches in a sung melody and compares these pitches with
symbolic representations of melodies in a large database.
Melodies that are similar to the sung pitches are retrieved.
Approximate pattern matching in the melody comparison process
compensates for the errors in the sung melody (e.g., sharp or flat
notes, wrong tempo) by using classical dynamic programming. A
filtering technique saves much of the computing necessities
involved in dynamic programming.
CubyHum has been integrated in an in-house research
demonstrator, the ‘Easy Access’ music jukebox, in which
innovative user interface solutions supporting various user search
strategies and intentions in music retrieval are demonstrated (see
Figure 4). Besides ‘query by humming’, this Internet-connected
jukebox incorporates

speaker identification for personalization purposes,
collaborative filtering for recommending new music,
navigation and playlist creation features by voice and
pointing gestures, and

CubyHum: A Fully Operational Query by Humming System

system feedback by text-to-speech synthesis and auditory
cues.

Using this personalized jukebox, a user can simply name, sing and
point at songs to listen to or to collect them in a playlist.

Figure 4. The ‘Easy Access’ music jukebox.

Some formal user studies and evaluations on ‘query by humming’
(and the Jukebox as a whole) have already been finalized. Their
findings guide further algorithmic improvement and tell what
usability issues for a ‘query by humming’ system are prevalent. As
a conclusion, we would like to address the following
recommendations for further research.

8.1 Pitch detection
The current pitch detection algorithm (sub-harmonic summation)
has been developed for normal speech for which it works reliably.
It has been made robust with respect to deviant pitch values by
smoothing the pitch contour in a dynamic programming
framework. Further research has to be pursued to detect pitch
reliably for highly pitched tones, inharmonic sounds and severely
degraded acoustical or channel conditions.

8.2 Event detection
The current event detection is based on standard signal processing
algorithms. For best performances, users are recommended to sing
the notes of their melody in an isolated manner using a non-sense
syllable of an unvoiced fricative and a long vowel (e.g., ‘/fa/-/fa/-
/fa/’). Although this isolated way of singing can be easily taught
and learnt, it takes away any opportunities for expressive and free-
style singing.
Further research has to be pursued to detect musical events
robustly and reliably allowing users to sing in any preferred style.
For instance, the finding of note onsets can be helped by robust
vowel onset detection mechanisms and the use of parametric
models that detect abrupt signal changes or employ the presence
of stationary signal segments. Moreover, singing contains all
kinds of expressive means that largely go unnoticed by the current
event detection method. If, for instance, vibrato or accentuation
can be reliably detected, these cues can be used to extend the
melody comparison process.

8.3 Approximate pattern matching
Computing requirements are dominated by approximate pattern
matching. It turned out that melody comparison by means of
classical dynamic programming is impractical in terms of running
time performances for large melody databases. Using the current
filtering method, current response times take a few seconds for a
database with only 510 melodies on a current platform. From a
usability point of view, this has to be reduced to half a second for
a database with many more melodies.

Research on fighting the inherent �� 10 ⋅Ο time complexity of
dynamic programming is pivotal. There are essentially two
approaches to tackle this challenge. Index methods for
approximate pattern matching allow a search to jump swiftly to
candidate approximate matches in the database; this field is new
and rather immature. In addition, some recurrent expressions for
finding approximate matches can be evaluated by a fast bit-
parallel implementation of dynamic programming. These
algorithms exploit the intrinsic parallelism of bit-vector
operations. If the length of the pattern P is smaller than the size of
the computer word, they can run in essentially linear time [1][13].

9. ACKNOWLEDGMENTS
Thanks go to Dik Hermes (Technische Universiteit Eindhoven) for
telling me everything about pitch perception, Sander van de
Wijdeven for helping me C++debugging ‘CubyHum’ and all
members of the Philips ‘Easy Access’ research project team.

10. REFERENCES
[1] Baeza-Yates, R., and Navarro, G. (1999). Faster approximate

string matching. Algorithmica 23, 2, 127-158.

[2] Brown, J.C., and Vaughn, K.V. (1996). Pitch center of
stringed instrument vibrato tones, Journal of the
Acoustical Society of America, 100, 1728-1735.

[3] Chang, W., and Lawler, E. (1994). Sublinear approximate
string matching and biological applications. Algorithmica,
12, 4/5, 327-344.

[4] Dowling, W.L. (1978). Scale and Contour: Two components
of a theory of memory for melodies. Psychological Review,
85, 4, 341-354.

[5] Dowling, W.J., and Harwood, D.L. (1986). Music cognition.
New York: Academic Press.

[6] Ghias, A., Logan, J., Chamberlin, D., and Smith, B.C.
(1995). Query by humming: Musical information retrieval in
an audio database. Proceedings of the ACM international
Multimedia conference and exhibition, November 1995, San
Francisco, California. New York: ACM, 231-236.

[7] Hermes, D.J. (1988). Measurement of pitch by subharmonic
summation. Journal of Acoustical Society of America, 83, 1,
257-264.

[8] Levitin, D.J. (1994). Absolute memory for musical pitch:
Evidence from the production of learned melodies.
Perception & Psychophysics, 58, 927-935.

[9] Masri, P., and Bateman, A. (1996). Improved modelling of
attack transients in music analysis-resynthesis. Proceedings
of International Computer Music Conference (ICMC 96),
Hong-Kong, Aug 1996, International Computer Music
Association, 100-103.

[10] McCreight, E. (1976). A space-economical suffix tree
construction algorithm. Journal of ACM, 23, 2, 262-272.

[11] McNab, R.J., Smith, L.A., Witten, I.H., and Henderson, C.L.
(2000). Tune retrieval in the multimedia library, Multimedia
Tools and Applications, 10, 113-132.

[12] Mongeau, M., and Sankoff, D. (1990). Comparison of
musical sequences. Computers and the Humanities, 24, 161-
175.

[13] Myers, G. (1999). A fast bit-vector algorithm for approximate
string matching based on dynamic programming. Journal of
the ACM, 46, 4, 395-415.

CubyHum: A Fully Operational Query by Humming System

[14] Peynirçioglu, Z.K., Tekcan, A.I., Wagner, J.L, Baxter, T.L.,
and Shaffer, S.D. (1998). Name or hum that tune: Feeling of
knowing for music, Memory & Cognition, 26, 6, 1131-1137.

[15] Rabiner, L.R. and Juang, B. (1993). Fundamentals of Speech
Recognition, Prentice-Hall Inc.

[16] Schloss, W. (1985). On the Automatic Transcription of
Percussive Music: From Acoustic Signal to High Level
Analysis, PhD Thesis, Department of Music, Report No.
STAN-M-27, Stanford University, CCRMA.

[17] Sellers, P.H. (1980). The theory and computation of
evolutionary distances: Pattern recognition. Journal of
Algorithms, 1, 359-373.

[18] Ukkonen, E. (1995). Constructing suffix trees on-line in
linear time. Algoritmica, 14, 3, 249-260.

[19] Ukkonen, E. (1992). Approximate string matching with q-
grams and maximal matches. Theoretical Computer Science,
92, 1, 191-211.

[20] Wagner, R.A. and Fischer, M.J (1974). The string-to-string
correction problem, Journal of the Association of Computing
Machinery, 21, 1, 168-173.

	INTRODUCTION
	THE ART OF SINGING
	PITCH DETECTION
	EVENT DETECTION
	Short-term energy method
	Surf method
	High-frequency content method
	Pitch method

	QUANTIZATION
	MELODY REPRESENTATION
	MELODY COMPARISON
	Notation
	Typical problem instances
	Edit distance
	Local melody differences
	Dynamic programming solution
	An index method: Filtering
	Heuristic adjustments
	Filtering experiment
	M

	CONCLUSIONS
	Pitch detection
	Event detection
	Approximate pattern matching

	ACKNOWLEDGMENTS
	REFERENCES

