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ABSTRACT 
'Query by humming' is an interaction concept in which the identity 
of a song has to be revealed fast and orderly from a given sung 
input using a large database of known melodies. In short, it tries to 
detect the pitches in a sung melody and compares these pitches 
with symbolic representations of the known melodies. Melodies 
that are similar to the sung pitches are retrieved. Approximate 
pattern matching in the melody comparison process compensates 
for the errors in the sung melody by using classical dynamic 
programming. A filtering method is used to save computation in 
the dynamic programming framework. This paper presents the 
algorithms for pitch detection, note onset detection, quantization, 
melody encoding and approximate pattern matching as they have 
been implemented in the CubyHum software system.   Since 
human reproduction of melodies is imperfect, findings from an 
experimental singing study were a crucial input to the 
development of the algorithms. Future research should pay special 
attention to the reliable detection of note onsets in any preferred 
singing style. In addition, research on index methods and fast bit-
parallelism algorithms for approximate pattern matching need to 
be further pursued to decrease computational requirements when 
dealing with large melody databases.  

1. INTRODUCTION 
Typically, people listen to music separately from gaining 
knowledge about the name of the performer, the composer or the 
title of the song. Because song titles and melodies are not learnt 
associatively, recalling a song title from a given melody or vice 
versa is notoriously difficult [14]. Obviously, it is hard to find 
music without knowing it by heart. The interaction concept of 
‘query by humming’ makes it possible to retrieve a song when the 
user ponders a catchy tune without being able to name the song. It 
allows the user to sing any melodic passage of a song, while the 
system seeks the song containing that melody fast and orderly 
[6][11]. 
The current implementation of ‘query by humming’ in the 
CubyHum software system is a linked combination of speech 
signal processing, music processing and approximate pattern 
matching guided by empirical findings from singing experiments. 
Its algorithmic organization is illustrated in Figure 1 and forms the 
guide to this paper. ‘Query by humming’ requires symbolic 
representations of the song melodies consisting of a sequence of 
musical notes (e.g., their pitch names) and the time onset and 
offset of each note. 
First, the pitch is estimated from the singing by a technique called 
sub-harmonic summation (SHS). In short time frames, SHS 
computes the sum of harmonically compressed spectra. In 

principle, the maximum sum result is chosen as the pitch estimate 
in that time frame. 
Second, musical events and timing information are detected in the 
singing such as note onsets, gliding tones and inter-onset-
intervals. Standard signal processing techniques using short-time 
energy, pitch level shifts and amplitude envelopes are used for 
finding note onsets. 

Figure 1. The algorithmic framework of ‘query by humming’ 
as implemented in CubyHum. 

 

Both the pitch and timing information are combined and quantized 
into musical notes and durations. Note quantization is based on 
the tuning and scale standards in Western music. This 
quantization transforms the singing input into its formal musical 
notation. From this musical score, a melody can be synthesized for 
auditory feedback by using standard MIDI1 technologies. 
Since people are inaccurate in remembering and reproducing a 
melody, a melody representation and comparison process are 
devised that are largely invariant to key, tempo and ornamentation 
(i.e., adding and leaving out notes). First, not the absolute musical 
pitches, but the intervals between notes are used, as they are 
insensitive to key. In particular, nine interval classes are defined 
that represent different interval sizes. Large intervals (i.e., larger 
that 6 semitones) are not further distinguished since they are hard 
to sing and occur rarely in musical melodies from all over the 

1 MIDI stands for Musical Instrument Digital Interface, which is a 
standard format to exchange music performance data between 
music synthesizers and sequencers. 
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world. Likewise, duration ratios are used between successive 
notes, as they are insensitive to tempo. 
Approximate pattern matching techniques allow the detection of 
patterns in tunes that are transformed and distorted in various 
ways. For that, we have defined a distance between any two 
variable-length melodies that depends on interval sizes and 
duration ratios.  In general, it comes down to the search of an 
optimal alignment between melodies by minimizing the number of 
changes that are needed to transform one melody into another. 
This problem can be easily solved in a dynamic programming 
framework. However, classical dynamic programming is 
impractical in terms of running time performance for large melody 
databases. Therefore, a filter mechanism has been implemented 
that quickly discards passages in the melody database that cannot 
contain an approximate match. 

2. THE ART OF SINGING 
It is obvious that people have imperfect memories for melodies or 
may lack any formal singing practice. Unfortunately, the literature 
does not provide clear-cut insights into the singing performance of 
the general public, the long-term memory and recollection of 
melodies and how these issues relate to experienced singers and 
real-world song material. This knowledge is indispensable for the 
development of ‘query by humming’ algorithms. Hereunder, we 
summarize some of our findings of an experiment that examined 
the effects of singing experience, song familiarity and recent song 
exposure on singing popular rock song melodies2 from memory. 
These findings were a crucial input to the development of the 
algorithms for ‘query by humming’. 
People sing any part of the melody. A repetitive melodic passage 
in a song may represent the 'hook-line' of a song that 'gets stuck in 
people's head'. 
People sing at the wrong key. In our study, people chose a 
random pitch to start their singing. Only for their most favorite 
songs, people are thought to have a latent ability of absolute pitch 
[8]. 
People sing at a reasonably correct global tempo. In our study, 
people knew or had a feeling, by previous hearings, what the 
correct tempo would be and were able to approach this tempo 
reasonably accurately. 
People sing too many or too few notes. Human memory is 
imperfect to recall all pitches in the right order. In our study, 
people sang just the line they remembered. They also added all 
kinds of ornaments (e.g., grace notes, filler notes, or thinner notes) 
to beautify their singing or to ease the muscular motor processes 
involved in singing. 
People sing the wrong intervals or confuse some with others.
From our study, people sang about 59% of the intervals correctly, 
though there were differences due to singing experience, song 
familiarity and recent song exposure. Interval confusion seems to 
be symmetric; interchanging an interval with another was found to 
be equally likely as the other way around. A large interval (thirds 
and larger) tends to be more easily interchanged for another. 
People sing the contour reasonably accurately. In our study, 
people largely knew when to go up and when to go down in pitch 
when singing; they did that correctly in 80% of the times. 
People with singing experience sing better on some aspects 
than people without singing experience do. In our study, the 
non-experienced and experienced singers did not differ in singing 
the contour of a melody accurately. However, experienced singers 

2 Twelve songs of the Beatles were used as experimental data. 

reproduced proportionally more correct intervals and sang at a 
better timing. 
People sing familiar melodies better than less familiar ones. In 
our study, less familiar melodies were reproduced with fewer 
notes and had proportionally fewer correct intervals than familiar 
melodies. Also, both experienced and non-experienced singers 
improved their singing of intervals when they had heard the 
melody very recently. 

3. PITCH DETECTION 
Pitch is a percept that is defined as the characteristic of a sound 
that gives the sensation of being high or being low. For a complex 
tone (as the human voice), the pitch corresponds mainly with the 
fundamental frequency of the signal. However, the correlation 
between sound frequency and pitch is not perfect, since pitch 
perception is influenced by the intensity, the duration, the 
surrounding sounds and the harmonics of the sound. Accurate 
pitch detection algorithms for normal speech have been 
developed, under the assumption that the voice has been well 
recorded under controlled conditions. 
Typical pitch in normal conversational speech is in the range of 
110 Hz in the male, 220 Hz in the female and 300 Hz in the child 
and may vary within one octave. When considering all voices and 
registers, singing extends from 80 Hz (the 2( of a bass singer) to 
1400 Hz (the 6& of a soprano singer) and may vary over two-and-
a-half octaves. We expect the pitch range for humming to lie in 
the first one-and-a-half octave of the normal singing range. On the 
other hand, whistling extends from 700 Hz to 2800 Hz; the lowest 
whistling tone of person comes near to the person’s highest 
reachable sung note. 
We use the sub-harmonic summation (SHS) method [7] to 
estimate the pitch in the singing.  This method stems from the 
theory that each spectral component (i.e., spectral peak) 
contributes to the perception of a pitch that corresponds to the 
frequency of the component. Also, elements that have a lower 
harmonic relationship with this component (i.e., that have an 
integral factor in frequency) contribute to the perception of a 
pitch, taking into account that higher components contribute less 
than lower components do. All these contributions add up in a 
sub-harmonic summation. The maximum of this sum result is the 
estimate of the pitch. Even when a fundamental frequency (i.e., 
the first harmonic) is missing in the signal, while other harmonics 
are present, this mechanism creates a (virtual) pitch of about that 
typically produced by that fundamental. Virtual pitch is common 
in human perception. The algorithm has been implemented as 
outlined in the original paper [7]. 
The algorithm can be explained by a single expression,  

�ORJ��ORJ��� ��
�

� QV6QV:KV+
1

Q

Q ++= ∑
=

− (1) 

where IV ORJ�= denotes the logarithmic frequency, ��V+

represents the sub-harmonic sum spectrum, N (e.g., 15) denotes 
the number of harmonics, Q is the compression rank, h (e.g., 
0.84) denotes the decreasing factor, ��V: is an arc-tangent 
function representing the transfer function of the auditory 
sensitivity filter, and �ORJ� � QV6 + denotes the compressed 
amplitude spectrum representation. When a spectrum is 
compressed, its frequency axis is squeezed by an integral factor, 
the compression rank n, and consequently its peaks come closer to 
each other. A pitch estimate is then the value of VI �= for which 

��V+ is the maximum. 
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Robust pitch estimation is difficult when relying on a single 
frame; octave errors or other erratic pitch estimates for ‘creaky’ 
and ‘hoarse’ voices are hard to circumvent without taking the 
necessary precautions. Since the sub-harmonic sum spectrum 
provides an array of pitch estimate candidates, a post-processing 
procedure is used to smooth the pitch contour. For that, we use a 
dynamic programming framework in which sudden pitch jumps 
larger than 50 Hz are prohibited by interchanging a deviant 
absolute maximum by one of the relative maximums in the sub-
harmonic sum spectrum. 

4. EVENT DETECTION 
Once the continuous pitches have been identified, the time 
locations at which a note starts (the onset time) and ends (the 
offset time) have to be found. To date, no algorithm has been 
developed that reliably detects the wide range of possible note 
onsets in performance data from different singing styles. For the 
current purpose, note onsets are defined as vowel onsets. 
Consequently, the singing is assumed to consist of short, relatively 
isolated syllables, preferably comprising a lengthened unvoiced 
fricative and a long mid vowel (e.g., /fa/-/fa/-/fa/). Note onsets are 
then characterized by an abrupt rise in energy over a broad 
frequency range. The sustained note has a relatively steady 
spectral shape representing the formants of the vowel used. 
Though note offsets can be identified to some extent by the fall of 
energy in especially the higher frequencies, they are less clearly 
defined. This is due to the exponential decay of the amplitude of a 
note making a note already inaudible while it is still physically 
present. 
We have linked several standard signal processing techniques to 
detect the rise and fall of energy in different frequencies to 
segment the signal into note onset and offset times. First, the 
short-term energy method is used to detect silent parts in the 
singing. Subsequently, each non-silent part is provided to the 
other three methods in succession. We assume a digital signal 

��Q[ , for ���� −= 1Q � that is pre-emphasized by the filter 
�95.01 −− z to produce a 32 dB boost in the spectral magnitude, 

blocked into frames. 

4.1 Short-term energy method 
The short-term energy method is a straightforward method to 
detect note onsets and offsets and to distinguish singing from 
silence. For that, the signal is blocked into non-overlapping 
frames of 10 ms. 

The short-term energy k( in frame k is estimated by  

∑
=

=
1

Q

N Q[(
�

��� (2) 

The short-time energy is normalized by a maximum short-term 
energy found in a running window of the signal. Adaptive 
threshold values are used to determine note onsets and note 
offsets, in which the note onset threshold (e.g., 0.02) is defined to 
be higher than the note offset threshold (e.g., 0.01). This is done 
to avoid an on-off oscillation of a marginal signal (e.g., a weak 
fricative). First, the procedure looks for the first note onset to be 
detected. If the short-time energy exceeds the onset threshold, a 
note onset is detected. If, after a note onset has been detected, the 
short-time energy falls below the offset threshold, a note offset is 
detected. 

4.2 Surf method 
The Surf onset detection algorithm has been adopted from the 
techniques of Schloss [17]. The signal is passed through a first- 

Figure 2. The waveform produced by a male person singing 
the first melody line of the Beatles’ song ‘Yesterday’ of 12 

notes by using the syllables ‘na-na’.  The short-term energy 
method indicates regions of silence and singing for isolated 

notes; it detects 9 note onsets. The Surf method indicates the 
same 9 note onsets by looking at the positive zero-crossings in 

the surf contour. The high-frequency content method can 
detect all 12 note onsets by peak picking; there are some 

spurious peaks that can result in ‘false alarms’. The pitch 
method can detect gliding note onsets by looking how the pitch 

contour fluctuates over time. 
 

order high pass filter and blocked into frames of 20 ms, with a 
frame shift of 10 ms. The frames are used to compute a smoothed 
amplitude envelope of the signal that represents the higher 
frequencies. This envelope ��N\ is made out of the sequence of 
average absolute values of the signal within each frame k. The 
slope of the envelope is found by a polynomial fitting procedure 
[15]. For that, the envelope sequence is fitted with a second-order 
polynomial over a M-point segment of the sequence. We denote a 
small finite envelope sequence around sample τ by 

{ }0 0Wty −=+ )(τ , where M specifies the width of the polynomial 
interpolation. This small segment is fitted by a second-order 
polynomial �ctbta ++  by minimizing some fitting error. 

 
A polynomial approximation of the slope at τ is then given by 

∑ ∑−=
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We compute a 5-point approximation; M is fixed at 2. At the 
edges of the envelope sequence, no slope computation is done.  
Since a note onset is characterized by an abrupt rise of higher 
frequencies of the signal, we looked at positive zero-crossings of 
the slope contour to find these onset times. 

4.3 High-frequency content method 
The high-frequency content method has been adopted from Masri 
and Bateman [9]. It aims at revealing both changes in overall 
energy and the energy concentration at higher frequencies. The 
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signal is blocked and Hanning-windowed into frames 
���� −= .N � of 20 ms, with a frame shift of 10 ms. 

A M-point FFT is used to produce a short-time DFT ��P; k . The 
short-time energy k( in frame k is computed as the sum of the 
squared magnitude of each FFT bin, 

∑
+

=

=
���

�

�
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0
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where 0P denotes the lowest FFT bin that is taken into account. 
Only the FFT bins are considered that fall within a frequency band 
of 400 Hz and higher. 

The short-time higher frequency content k+ in frame k is a 
weighted version of k( , linearly biased to the higher frequencies, 
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A detection function is computed that combines each pair of 
consecutive frames; it is the product of the rise in high frequency 
energy between two frames and the current normalized high 
frequency content, 

N

N

N

N
N E

H
H
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The first ratio represents the rise in high frequency content. The 
second ratio represents the normalized high frequency content for 
the current frame k. Their product (i.e., k' ) peaks prominently at 
abrupt increase in high frequency energy content. If it surpasses a 
given threshold, we say that the detection function has found a 
note onset.

4.4 Pitch method 
The pitch method is a way to segment gliding notes into note 
onset and offset times. Essentially, it groups and averages the 
pitches as found in 40 ms frames in different windows on a frame-
by-frame basis. For this, we use a growing window of frames for 
which it has been concluded that they contain similar pitches. The 
growing window maintains the pitch of a current note.  A second 
window of fixed size is placed at the end of the growing window. 
The median pitch is computed for both windows. If the median 
pitch of the fixed-size window falls within 100 cents (a semitone) 
of the median pitch of the growing window, the growing window 
is extended with one frame and, consequently, the window of 
fixed size is moved one frame; the computation starts over again. 
If, however, the median pitch of the fixed-size window equals or 
differs more than 100 cents (a semitone) from the median pitch of 
the growing window, it is concluded that the position of the fixed-
size window notifies the start of a new note. 
The offset time of the current note and the onset time of the new 
note are determined by the starting frame of the window of fixed 
size. Now, the window of fixed size is the growing window and a 
new window of fixed size is placed at the end of it; the 
computation starts over again. 
The minimal length of any window is determined at 3 pitch frames 
(120 ms), which also determines the minimal duration of a gliding 
note. Finding note onset and offset times on the basis of a 
changing pitch has the advantage that the user has some freedom 
in singing: notes do not need to be sung in an isolated manner but 
can be 'thread together'. However, a gliding note (or glissando) is 

segmented into a step-wise sequence of ascending or descending 
notes of 120 ms each. 

5. QUANTIZATION 
Quantization means the division of the pitch (tone) and time 
continuum into discrete steps. These steps are necessary to decide 
exactly how much the pitch has changed or what temporal units 
have elapsed.   Time quantization is not further discussed, since 
quantized duration is not used in the melody comparison. Instead, 
the inter-onset-interval (IOI) is used, which is the time difference 
between two adjacent note onsets. 
To arrive at a discrete musical pitch, a pitch center of a continuous 
pitch contour within a time interval is required. This pitch center 
should be the pitch perceived by the listener and correspond to the 
target pitch the singer intended to produce. Although there is 
ample evidence that the discrete pitch perceived in a pitch contour 
is that of the mean [2], the use of a mean is sensitive to octave 
errors or other deviant pitch estimates (e.g., due to vibrato, pitch 
overshooting or undershooting). We use the median pitch instead. 
If the contour is error free, the median and mean pitch in a time 
interval are reasonably close. 
The median pitch between a note onset and offset is used to 
quantize the musical pitch value for each note using the equally 
tempered musical scale tuned at +]$ ���4 = (A-440). Musical 
pitch is represented in categories along scales in terms of 
semitones and cents. These categories are relative measures based 
on frequency ratios. Knowing that an octave is a frequency ratio of 
2:1, the semitone is one-twelfth of an octave ( 1.059462�� ≈ ) and 
a cent is 1/100 of a semitone.  Now, notes on the equally tempered 
scale relative to A-440 occur at multiples of 100 cents; they can be 
expressed as a distance in cents from 8.176 Hz and have a total 
order.  For instance, the middle C ( +]& ������4 = ) is 6000 cents 
(or there about). To calculate the discrete musical pitch p of a 
median pitch f, we use the frequency ratio ������I5 = and 

 ���ORJ�� 2 +⋅= 5S (7) 
The musical pitch is then represented by an integer value; its 
corresponding pitch label is indexed in an array. By allowing an 
integer range between 0 and 127, we have essentially the MIDI 
convention to encode musical pitch. 
Singing is inevitably contained with deviations and changes from 
the universal tuning standard at A-440. For instance, people tend 
to fall or rise in pitch (and key, consequently) due to large interval 
sizes, fatigue and inaccuracies in muscular control. To compensate 
for this, the tuning standard is adapted to the singing in due 
course. For the first note sung, it is assumed that singing starts at 
the universal tuning standard. For each next note, the (closest) 
musical pitch is calculated and the cent difference between the 
pitch sung and the musical pitch is computed. Using an inverse 
variant of Equation 7, the reference pitch (which is at 8.176 Hz, at 
first) is adapted, which changes all musical pitches relative to this 
reference pitch. 

6. MELODY REPRESENTATION 
A melody representation that is invariant to key is an interval 
representation, that is, the sequence of distances between two 
succeeding notes expressed in semitones. In particular, a melody 
sequence NVVV6 �21= comprising absolute pitches is 

transformed in a sequence )())(( �����



−−−−⋅= 11 ssssssS � ,
where the dot ‘ ⋅ ’ represents a special start element since no 
interval is associated with the first note in a melody. 
In order to transcend from mode and to use a diatonic scale 
structure, intervals are grouped together. This has to be done 
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without knowledge about the tonic since we do not know the key 
of the melody. Except for the unison, all intervals are categorized 
in groups of two intervals of 1 to 2 semitones. In addition, all 
intervals larger than 6 semitones are grouped in a single category 
for ascending and descending intervals. It is well-known that 
intervals larger than 5 semitones and greater are rare (only 10%) 
in musical melodies from all over the world [5]. In addition, large 
intervals are difficult to sing accurately. 
As shown in Table 1, the interval categories are represented by the 
integers ������� �−− . The special start element ‘ ⋅ ’ is maintained. 
The resulting melody representation is a 9-step contour and 
resembles the Dowling model of how melodies are assumed to be 
stored in human memory [4]. Temporal information is kept by 
storing the real value of the inter-onset-interval (IOI) of each note 
to each corresponding 9-step contour element. 
Invariance to global tempo is established by calculating the ratios 
of two IOIs, but this is done in the melody comparison. 

Table 1. The 9-step melody representation (st = semitone). 
interval name interval size integer code 

desc. dim. fifth and greater < -6 st -4 

desc. perfect/augm. fourth -5 or –6 st -3 

desc. minor/major third -3 or –4 st -2 

desc. minor/major second -1 or –2 st -1 

unison 0 st 0 

asc. minor/major second 1 or 2 st 1 

asc. minor/major third 3 or 4 st 2 

asc. perfect/augm. fourth 5 or 6 st 3 

asc. dim. fifth and greater > 6 st 4 

7. MELODY COMPARISON 
The art of melody comparison is finding approximate similarities 
between finite sequences of elements drawn from a finite alphabet, 
though the sequences have different lengths. In our case, one 
sequence is a relatively small pattern and a second sequence that 
has a longer length.  The former sequence represent a transcription 
of what has been sung; the latter sequence represent a melody 
from the database. This sequence can also be interpreted as a 
concatenation of all melodies in the database. The pivot is 
defining an appropriate similarity metric (or distance measure) for 
melodic sequences that (1) assigns different costs to different local 
dissimilarities, (2) meets some invariance principles and (3) is 
‘psychologically plausible’; it should provide an orderly 
representation of the melodies that fits human expectation and 
music theory. 

7.1 Notation 
We adopt the following notation for comparing melodic 
sequences: let ∗Σ∈= 0qqqQ ��� be a query pattern sequence of 

length 04 = and ∗Σ∈= 1sssS ��� a sequence of length 

16 = . Σ is a finite alphabet of pitch intervals. Here, we use the 

9-step alphabet { }4,3,3,4� �−−=Σ −VWHS .

We denote Ms as the j-th element of S for an integer 

{ }1M ����∈ . We denote MLML ssS �� = as a subsequence (or 
factor) of S, which is the empty subsequence ε if ji > . The 

prefixes of S are the 1+N subsequences MM ssS �� �� = for 

Nj ≤≤0 . Likewise, the suffixes of S are 1M1M ssS �� = for 

11 +≤≤ Nj . In addition, we define a tabular function S/ ,
which is specific to the sequence S, that provides the IOI for a 
given j-th element of S. In particular, MM6 tsL =:)( , where Mt is the 

IOI for Ms .

7.2 Typical problem instances 
The performance of an approximate pattern matching algorithm 
depends on the length of the query pattern sequence M, the size of 
the longer sequence N, the size of the melody database, the size of 
the alphabet σ=Σ , the number of differences allowed k and 
consequently the error level =α k / M.

Practical problem instances for our melody comparison can be 
described by the following parameters. 

• The query pattern sequence Q has a typical length M of a 
dozen elements. For instance, singing the first phrase of the 
Beatles' song 'Yesterday' amounts to singing 12 notes (or 11 
intervals). 

• The melodic sequence S has a typical length N of a few 
hundred elements. The vocal melody of a popular rock song 
has about 300 notes. 

• The melody database can be as small as a few hundreds (for 
small-scale applications) and thousands and thousands (for 
full-scale applications). 

• The alphabet VWHS−Σ� has 9 elements. These elements are 
integers representing interval categories having total order. 

• In our singing experiment, we found that the percentage of 
errors allowed is in the range of 20-40%. 

7.3 Edit distance 
The traditional way to compare two sequences is to allow 
particular differences (or errors) of elements to occur in the 
sequences while computing their distance, denoted as 

+∗∗ ℜ→Σ×Σ �:ed . Thus, ��� 64HG represents the distance 
between 4 and S . The type of differences can be deletions, 
insertions and replacements of single elements that are necessary 
to transform one sequence into the other. A cost (or penalty) is 
associated with each transformation (or difference). A cost may be 
a constant (e.g., a unit cost for each transformation) or any value 
function that computes the difference between two elements in its 
context. By choosing appropriate costs, one can select those 
approximate matches that make sense in a particular domain and 
reject other which do not. When we restrict the costs to be unit, 
the match will be based on the unit-cost edit distance, that is, the 
minimal number of deletions, insertions and replacements to 
transform the sequence Q into the sequence S [20]. 
The unit-cost edit distance model can be used in two different 
ways. 
1. Minimal distance problem. Finding an approximate match 

between Q and S that has minimal edit distance. 
2. k-difference problem. Finding an approximate match (or all 

approximate matches) in S that has (or have) at most +ℵ∈ Rk
different elements with Q (i.e., at most an edit distance of k
with Q). 
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The computation of the edit distance can be easily solved by using 
classical dynamical programming for sequences of the same length 
[20] and for sequences of different lengths [17]. 

7.4 Local melody differences 
The edit distance model works fine for textual sequences and for 
melody representations that abstract from tonal and timing 
structures such as a contour representation. For melodies decoded 
in VWHS−Σ� and with timing information, we have to account for 
other types of differences and their effects. 
Hereunder, we enumerate the most important local differences 
between melodies. The ones that have to do with musical pitch are 
shown in Figure 3. Some of these differences (or human errors in 
melody reproduction) have already been discussed in Section 2. 

Figure 3. Typical local differences between melodies. 
Underneath each musical staff, the interval sizes in semitones 

are shown, not the interval categories from VWHS−Σ� .
1. Melodic sequences of variable length: the singing of any part 

of a melody. 
2. Amount of mistuning: the singing of an interval a little too 

sharp or flat should not be as bad as singing it far too sharply 
or flat. 

3. Modulation by interval replacement: the singing of a wrong 
interval may result in a key modulation of the whole 
succeeding melody line. 

4. Note replacement: replacing one note for another note has 
implications for the interval representation of the melody. 
The interval associated with the replaced note changes by a 
certain number of semitones, which is compensated by the 
very next interval. 

5. Note insertion: the singing of an additional note (a filler or 
grace note) has implications for the interval representation of 
the melody. The sum of the sizes of the two new intervals 
introduced by the inserted note equals the size of the original 
interval. 

6. Note deletion: forgetting to sing or missing a particular note 
(a thinner note) has implications for the interval 
representation of the melody. The size of the new interval 
due to the deleted note equals the sum of the sizes of the two 
original intervals. 

7. Other note and interval insertions and deletions: some 
insertions and deletions of small melodic fragments cannot be 
accounted by some of the above-mentioned schemes. For 
instance, short melody lines can be added or deleted. 

8. Duration error: the lengthening or shortening of a note 
without changing global tempo. 

In addition to these local melody differences, one might think 
about the concepts of consolidation and fragmentation as 

introduced by Mongeau and Sankoff [12]. A consolidation 
represents the replacement of several notes at the same pitch by a 
single note at that pitch. Likewise, a fragmentation represents the 
replacement of a single note by several ones at the same pitch. If 
these sequence differences were interpreted by a series of single 
insertions and deletions, it would cost more than counting them as 
a single transformation. However, these concepts occurred rarely 
in the singing data of the experiment and are computationally 
intensive. Therefore, we found them not in proportion to their 
added benefit. 

7.5 Dynamic programming solution 
Similar to the edit distance model, the classical dynamical 
programming approach to compute the melody distance ��� 64'
between two melodic sequences MTTT4 �21= and 

NVVV6 �21= is done by filling a matrix )( ��� 10D �� . The 

entry MLD � holds the minimal melody distance between the two 

prefixes i4�1 and MS �� . The algorithm to construct the matrix is 
done by using the following recurrent formula 
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where �� =Σ= −VWHSσ denotes the size of the alphabet, and C

and K denote constants that have to be determined empirically. 
We use C = 1 and 2.0=K .

The following set of initial boundary conditions and special cases 
is used 
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The rationale of the recurrent formulae is, first, that pitch intervals 
between melodies are penalized by their absolute difference, 

ML VT − . If the pitch intervals are equal, there is no interval cost. 

If they are not equal, we speak about an interval replacement that 
may result in a modulation (key-change) of one melody in 
comparison to the other. The interval cost is normalized by the 
size of the alphabet so that it will never reach a cost of 1 or higher. 
Additional to this interval cost, there is a durational cost expressed 
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by the absolute difference of duration ratios. The constant K
represents the relative contribution of duration differences versus 
that of interval differences. A note replacement is not explicitly 
accounted for, but it can be interpreted as two modulations in 
series since it involves two succeeding intervals. 

Second, if MLL sqq =+−� or MML ssq += −� , we speak of a note 
insertion or note deletion, respectively. Recall that a note 
insertions or deletions have special implications for the underlying 
intervals, expressed by the conditional summations. An interval 
cost of 1 is associated with these differences. The durational cost 
penalizes longer durations of inserted or deleted notes more than 
smaller durations; it thus favors grace notes for thinner and filler 
notes. In principle, the concepts fragmentation and consolidation 
can be worked out using the same scheme. 
The two remaining differences are the insertions and deletions that 
cannot be accounted for by the other schemes. Their costs are 1 
plus a varying durational cost. The duration cost is based on the 
motivation that the deletion of an interval can be seen as replacing 
a note with a nullified note of zero-length. Likewise, an interval 
insertion is similar to replacing a zero-length note with a note of a 
non-zero length. 
The initial boundary conditions and special cases look rather 
complicated because (1) they express the possible start of Q at any 
position in S, (2) the fact that the used duration ratios do not exist 
at the very start of a sequence and (3) the fact that the sequences 
start with a special start symbol. 

The filling of the matrix )( ��� 10D �� starts at ���D and ends at 

10D � in either a column-wise top-to-bottom manner or a row-
wise left-to-right manner. By keeping track of each local 
minimization decision in the matrix in a pointer structure, one can 
reveal the optimal alignment between P and a subsequence of S.
The entry in the column )( �� 10D � holding the minimal distance 
value refers to the end of an optimal alignment. By tracing back 
the pointers, one can recover all local minimization decisions in 
reverse order that resulted in this minimal value and, hence, the 
starting point of the optimal alignment. Likewise, one can find 
multiple optimal alignments, if there are several. Or, one can find 
the alignments (and positions) that have a distance that is lower 
than a pre-defined threshold. 
Since we have to compute all entries of the matrix and the 
computation of each entry MLD � is a constant factor, the worst and 

average case time complexity is still �� 10 ⋅Ο . Note that this 
computation has to be done for each melody in the database. A 
significant reduction in practical computing time without loss of 
performance can be obtained by leaving out the recurrent 
expressions for note insertion and deletion. 
In principle, if we compute the matrix column-wise or row-wise, 
only the current column (or row) and the previous two need to be 
stored; only ��PLQ�� 10⋅ cells are required. Since NM < , the 
space required is ��0Ο .

7.6 An index method: Filtering 
Chances are small that a query pattern Q has a high approximate 
melodic similarity with many melodic passages S in the database. 
Leaving out subsequences in S that cannot have a sufficiently high 
similarity with Q saves the computation of complete columns in 
the dynamic programming matrix used to evaluate Equations (8) 
and (9). Index methods quickly retrieve parts in S that might be 
highly similar to Q. When these parts in S are identified, they still 
need to be evaluated by using Equation (8) and (9) to ensure 
whether or not they really match with Q.

Current index methods are based on the k-difference problem 
between 4 and S using the unit-cost edit distance model. One of 
these index methods is known as ‘filtering’: parts in S that meet a 
well-defined necessary (but not sufficient) ‘filtration’ condition 
with respect to Q and a pre-defined error level =α k / M are 
candidate for further evaluation; all other subsequences are 
discarded. It is conceivable that discarded parts in S can still have 
a high melodic similarity with Q, as the filtering is based on the 
edit distance. To alleviate this discrepancy, the error level has to 
be set appropriately. 
The used filtering method is the Chang and Lawler’s LET (Linear 
Expected Time) algorithm [3]. It discards a subsequence of 
S when it can be inferred that it does not contain an approximate 
match with 4 . This can be done by observing that a region in S
having a k-approximate match with a pattern Q of length M is at 
least of length M - k and is a concatenation of at most 1+k
longest subsequences of Q with intervening (non-matching) 
elements.  So, the 'filtration' condition says that any subsequence 
in S of 1+k concatenated longest subsequences of Q that is 
shorter than M - k can be discarded. The remaining subsequences 
are further evaluated using Equation (8) and (9). 
The algorithm uses a suffix tree on Q to determine in linear time 
the longest subsequences of Q in S. A suffix tree on a sequence Q
is a special data structure that forms an ordered representation of 
all suffixes of Q. A suffix tree can be built in linear ��0Ο time 
and needs ��0Ο space [10][18]. 

The algorithm works by traversing S in a linear fashion (from left 
to right) and maintains the longest subsequence of Q at each 
element in S using the suffix tree on Q. When this subsequence 
cannot be extended any further, it starts a new subsequence of Q at
the next element. Note that there is an intervening element defined 
between any two longest subsequences of Q in S. These elements 
are called markers in S.
The result is a partitioning of S that consists of the longest 
subsequences of Q intervened by markers. Subsequences in S are 
discarded, if they are a concatenation of 1+k longest 
subsequences of Q (with k markers) of a length that is shorter than 

kM − .

An additional result of the partitioning of S with respect to P is the 
number of markers in S. This quantity is also known as the 
maximal matches distance between S and P. This distance has 
been proven to be a lower bound for the unit-cost edit distance 
[19]. 

Example. Let =4 abcba ( 5=M ) and =S adaaabdbadbbb 
( 13=N ). The partition of S as a concatenation of longest 
subsequences of Q intervened by markers is a-a-ab-ba-b-b, since 
a, ab, ba and b are all (longest) subsequences of Q in S. The 
markers have been omitted at positions 2, 4, 7, 10 and 12 in S. The 
maximal matches distance between P and S equals 5. By 
allowing 1=k difference, the regions a-a and b-b are discarded 
since they are of length 3 < M – k = 4. On the other hand, the 
regions a-ab, ab-ba and ba-b need to be further evaluated since 
their lengths are kM − .

7.6.1 Heuristic adjustments 
Filtering methods are judged on their correctness, their time 
complexity and their filtration efficiency. 
1. Correctness. The LET algorithm has been proven to 

correctly solve the k-difference problem, that is, it does not 
miss any approximate matches in S in edit distance sense. 
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However, regions in S that are filtered out by LET can still be 
similar to Q in our melody distance sense. 

2. Time complexity. The identification of candidate regions in 
S happens in linear time ��1Ο by using a suffix tree on Q.

3. Filtration efficiency. The efficiency relates to the number of 
elements that can be discarded by the filter. Filtering works 
well on low error levels and bad or not at all on higher error 
levels; the filtration efficiency drops very quickly at a 
particular error level. 

By using the maximal matches distance between a region in S and 
Q as a lower bound for their edit distance, we can further rule out 
regions in S on an heuristic basis by recognizing that S can have 
repetitive subsequences. Repetition in a melodic sequence is 
common; a melody can contain similar passages referring to the 
tune of the chorus or the individual phrases of a stanza. 
We use two rule-out methods aiming at increasing the filter 
efficiency at a given error level. The heuristic is based on the 
observation that a region in S does not need to be evaluated again, 
if a similar one has already been evaluated. 
1. LET-H1: all non-overlapping regions in S with equal 

maximal matches distances normalized by the length of the 
region to Q are maintained. From this set, only one region is 
subjected to further evaluation; all others are discarded. 

2. LET-H2: only the region in S with the minimal maximal 
matches distance normalized by the length of the region to Q
is chosen for further evaluation; all others are discarded. 

It must be emphasized that these heuristic extensions make the 
filter no longer working correctly, since approximate matches in S 
are discarded on purpose. To find a balance in correctness 
(heuristic) level, filtration efficiency and melody comparison 
performance, we empirically set 25.0=α while using method 
LET-H1. As shown in Section 7.6.2, this provides us a 64% to 
89% reduction in computing columns during dynamic 
programming for pattern sequences Q with a length of 12. In 
practice, the LET algorithm was found to be too permissive in 
providing still too many similar regions for further evaluation. In 
contrast, LET-H2 was found to be far too stringent by discarding 
relevant regions. Some regions in S that were discarded by LET-
H2 turned out to have a high melodic similarity with Q.

7.6.2 Filtering experiment 
In order to assess the filtration efficiency of the three filtering 
methods for typical problem instances, we conducted experiments 
with a varying error level α using a database with 510 popular 
melodies3, each containing 285 notes on average. The filtering 
methods were LET, LET-H1 and LET-H2. All sequences were 
made out of our alphabet VWHS��Σ of 9 interval elements.  The 
patterns Q were constructed with varying lengths (M = 10, 12, 
14). They were either randomly chosen excerpts from the database 
(the melodic sequences) or randomly compiled from the alphabet 
(the random sequences). 
A measure for filtration efficiency is the number of elements that 
are discarded divided by the total number of elements, 

1
11

HIILFLHQF\�ILOWUDWLRQ H−
= (10) 

3 The melody database contained 510 vocal monophonic melodies 
from songs of the Beatles (185), ABBA (73), the Rolling Stones 
(67), Madonna (38), David Bowie (34), U2 (33), Prince (23), 
Michael Jackson (20), Frank Sinatra (20) and the Police (17).  

where N denotes the total number of elements and e1 denotes the 
number of elements that need further evaluation. In order to 
decrease random variations, we have determined the averages of 
250 independent runs with different patterns. 
The results are shown in Table 2. The random sequences are more 
stringently filtered since they show little resemblance with the 
structure in popular melodies. It is clear that the filtration 
efficiency of LET has a steep drop at an error level α between 
0.2 and 0.3. The use of the heuristics in LET-H1 and LET-H2 
boosted the filter efficiency at each error level. An error level α
of 0.25 is an appropriate parameter value when using one of the 
filter approaches. 
Table 2. Filtration efficiency simulated for different parameters 
of a problem instance ( �� =Σ −VWHS ). Parameter combinations 

that resulted in zero filtration efficiency are not shown. 
M k α  Melodic sequences Random sequences 

   LET LET-
H1 

LET-
H2 LET LET-

H1 
LET-
H2 

10 1 0.10 0.99 1.00 1.00 1.00 1.00 1.00 

 2 0.20 0.81 0.90 0.97 0.97 0.98 0.99 

 3 0.30 0.22 0.37 0.76 0.35 0.49 0.85 

 4 0.40 0.03 0.06 0.24 0.04 0.07 0.26 

12 1 0.08 1.00 1.00 1.00 1.00 1.00 1.00 

 2 0.17 0.93 0.96 0.98 1.00 1.00 1.00 

 3 0.25 0.53 0.64 0.89 0.81 0.89 0.96 

 4 0.33 0.11 0.16 0.45 0.14 0.23 0.52 

 5 0.42 0.02 0.04 0.13 0.02 0.03 0.12 

14 1 0.07 1.00 1.00 1.00 1.00 1.00 1.00 

 2 0.14 0.98 0.99 0.99 1.00 1.00 1.00 

 3 0.21 0.77 0.83 0.94 0.96 0.97 0.99 

 4 0.28 0.28 0.38 0.70 0.45 0.58 0.86 

 5 0.36 0.06 0.08 0.24 0.06 0.08 0.25 

8. CONCLUSIONS 
CubyHum is a software system in which ‘query by humming’ is 
realized by linking algorithms from various fields: speech signal 
processing, music processing and approximate pattern matching. 
Empirical findings from singing experiments were a crucial input 
to the development of these algorithms. In short, it tries to detect 
the pitches in a sung melody and compares these pitches with 
symbolic representations of melodies in a large database. 
Melodies that are similar to the sung pitches are retrieved. 
Approximate pattern matching in the melody comparison process 
compensates for the errors in the sung melody (e.g., sharp or flat 
notes, wrong tempo) by using classical dynamic programming. A 
filtering technique saves much of the computing necessities 
involved in dynamic programming. 
CubyHum has been integrated in an in-house research 
demonstrator, the ‘Easy Access’ music jukebox, in which 
innovative user interface solutions supporting various user search 
strategies and intentions in music retrieval are demonstrated (see 
Figure 4). Besides ‘query by humming’, this Internet-connected 
jukebox incorporates 

speaker identification for personalization purposes, 
collaborative filtering for recommending new music, 
navigation and playlist creation features by voice and 
pointing gestures, and 
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system feedback by text-to-speech synthesis and auditory 
cues. 

Using this personalized jukebox, a user can simply name, sing and 
point at songs to listen to or to collect them in a playlist. 

Figure 4. The ‘Easy Access’ music jukebox. 
 

Some formal user studies and evaluations on ‘query by humming’ 
(and the Jukebox as a whole) have already been finalized. Their 
findings guide further algorithmic improvement and tell what 
usability issues for a ‘query by humming’ system are prevalent. As 
a conclusion, we would like to address the following 
recommendations for further research. 

8.1 Pitch detection 
The current pitch detection algorithm (sub-harmonic summation) 
has been developed for normal speech for which it works reliably. 
It has been made robust with respect to deviant pitch values by 
smoothing the pitch contour in a dynamic programming 
framework. Further research has to be pursued to detect pitch 
reliably for highly pitched tones, inharmonic sounds and severely 
degraded acoustical or channel conditions. 

8.2 Event detection 
The current event detection is based on standard signal processing 
algorithms. For best performances, users are recommended to sing 
the notes of their melody in an isolated manner using a non-sense 
syllable of an unvoiced fricative and a long vowel (e.g., ‘/fa/-/fa/-
/fa/’).  Although this isolated way of singing can be easily taught 
and learnt, it takes away any opportunities for expressive and free-
style singing. 
Further research has to be pursued to detect musical events 
robustly and reliably allowing users to sing in any preferred style.  
For instance, the finding of note onsets can be helped by robust 
vowel onset detection mechanisms and the use of parametric 
models that detect abrupt signal changes or employ the presence 
of stationary signal segments. Moreover, singing contains all 
kinds of expressive means that largely go unnoticed by the current 
event detection method. If, for instance, vibrato or accentuation 
can be reliably detected, these cues can be used to extend the 
melody comparison process. 

8.3 Approximate pattern matching 
Computing requirements are dominated by approximate pattern 
matching. It turned out that melody comparison by means of 
classical dynamic programming is impractical in terms of running 
time performances for large melody databases. Using the current 
filtering method, current response times take a few seconds for a 
database with only 510 melodies on a current platform. From a 
usability point of view, this has to be reduced to half a second for 
a database with many more melodies. 

Research on fighting the inherent �� 10 ⋅Ο time complexity of 
dynamic programming is pivotal. There are essentially two 
approaches to tackle this challenge. Index methods for 
approximate pattern matching allow a search to jump swiftly to 
candidate approximate matches in the database; this field is new 
and rather immature. In addition, some recurrent expressions for 
finding approximate matches can be evaluated by a fast bit-
parallel implementation of dynamic programming. These 
algorithms exploit the intrinsic parallelism of bit-vector 
operations. If the length of the pattern P is smaller than the size of 
the computer word, they can run in essentially linear time [1][13]. 
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