Indexing Music Databases Using Automatic Extraction of Frequent Phrases

Indexing Music Databases Using Automatic Extraction of
Frequent Phrases

Anna Pienimaki
Department of Computer Science, University of Helsinki
PO Box 26, FIN-00014 University of Helsinki, Finland
+358 40 838 9350

Anna.Pienimaki@cs.Helsinki.Fl

ABSTRACT

The Music Information Retrieval methodscan be classifiedinto
online and offline methods. The main dravback in most of the
offline algorithmsis the spacethe indexing structurerequires.The
amountof datastoredinto the structurecanhowever bereducedoy
storingonly thesuitableindex termsor phrasesnsteadof thewhole
contentof thedatabase.

Repetitionis agreedto be one of the most important factors of
musicalmeaningfulness.Thereforerepetitve musicalphrasesare
suitablefor indexing purposes.The extractionof suchphrasesan
be done by applying an existing text mining methodto musical
data. Becausef the differencedetweertext andmusicaldatathe
applicationrequiressometechnicalmodificationof the method.

This paperintroducesa text mining-basednusicdatabaséndexing
methodthat extractsmaximal frequentphrasedrom musicaldata
and sortsthem by their length, frequeng and personality The
implementatiorof themethodfoundthreedifferenttypesof phrases
fromthetestcorpusconsistingdf Irish folk musictunes.Thesuitable
two typesof phrasesutof threeareeasilyrecognizecindseparated
from the setof all phrasedo form anindex datafor the database.

Key words: musicretrieval, indexing, text mining.

1. INTRODUCTION

The Music Information Retrieval (MIR) methodshave developed
rapidly sincethe introductionof the Query by Humming system
[6]. Sincethenthe maininteresthasmoved from the signal pro-
cessingasksto representationandalgorithmicissues.Also some
aspectf musicologyand cognitive psychologyhave beentaken
into consideration.

The MIR methodscan be classifiedin mary ways using different
criteria. Oneof themostfundamentalaysto classifyMIR methods
is to divide theminto thosethat processdigitalized audio signals
usingdigital signalprocessingnethodsind thosethatprocesdigital
symbolicrepresentationBecausef thecompleity of polyphonic
signals,mostof the MIR systemausesymbolicrepresentationsf
musical dataas their inner representations.Suchrepresentations
usuallyareprocessethy usingvariationsof existing stringmatching
algorithms.

Thereare several differentsymbolic representationssedasinner
representationm MIR systems. The first MIR methodsusedthe
threeletter alphabetdescribingthe melodic contourof the mono-
phonicmelody [6]. Eventhoughmostoftheexistingrepresatations
describeesachnotewith one or moresymbols,therearealsosome
compressedepresentations which theobjectdescribeds acom-
bination of sequentiahotes [4, 3]. The functionality of mostof
themethodsuseddependstronglyon the structureof therepresen-
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tation and applyingthemto processotherrepresentationseequires
modificationsto the method. However therearefew methodsthat
arealsocapableo process setof differentrepresentation$§9, 10].

Anotherquite fundamentatlassificationof MIR methodss based
ontheuseof indexing. In the onlinemethodshewhole databasés

processedvhenexecutinga querywhile in the offline methodghe
queryis executedusingtheindex. Eventhoughthereareefficient
index structuredik e sufiix-tree [12], in mary caseshewholeindex

requirestoo much space. Thereforethereis a needfor new kinds
of methodsthat alsoreducethe amountof the datastoredinto the
index structure.

Thereare certainsimilarities in the use of text and musical data
which allow alsoapplyingtext mining methodso processnusical
data.Whenapplyingsuchtext processingnethodspnehasto take
careof thetechnicaldifferencebetweertext andmusicaldata. The
main differencesinclude polyphory, multidimensionalityof data
items,andtranspositiorinvariance.

Thispaperfintroducesatext mining-basedndexing methodfor sym-
bolic representationf musicaldata. The methodextractsmaximal
frequentpatterndrom musicaldataandsortsthemby their length,
frequeny and personality The found phrasesor somesubsetof
themcanbe storedinto theindex structureandusedasindex terms
in theMIR system.

2. INDEXING MUSIC DATABASES

As mentionedabose, MIR methodscan roughly be cateyorized
into online and offline methods. The offline methodscanalso be
dividedinto two groupsonthebasisof thedatastoredinto theindex

structure.Most of theoffline methodauseindexing which storeghe
whole contentsof the databasénto a more efficient structurelike

a sufiix-tree [12] or its variants [4]. The main dravbackof this

approachis the amountof spacesuchan index structurerequires
[7]. Thereforethe size of the structureis often reducedby using
simplealphabets[4, 3].

Anotherapproachto indexing is to usesimilar structuresbut store
only somepartsof the datainto it, sothe reductionof index size
doesnot limit thealphabet[8]. In this approachtthe mostdescrip-
tive musicalpatternsareextractedfrom the dataandusedasindex

terms. Eventhoughthe datamight include mary long meaningful
patternsthereductionof theamountof datais considerablelf the
dataincludesmary meaningfupatternsthesemayalsobesortedby

someof their properties Becauseherepetitionis widely agreedo

beoneof themostimportantfactorsthatindicatethemusicalmean-
ingfulnessof the phrasetheextractionof the meaningfulphrasess

doneon the basisof repetitionin this work.

The extraction of repetitive patternsis of interestalsoin the area
of text mining. Whenthe analyseddatais semi-or unstructured,
theimportantindex wordsor phrasesannotbeidentifiedusingthe
knowledgeof thetext structure.Becausahe mosttypical symbolic
representationaf musicaldatacanbeseerasunstructuredlata,the
methodglevelopedfor theneedf text mining mayalsobeapplied
to musicalcontexts.
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Ahonen-Myka [1] hasintroduceda text mining algorithm, which
extracts maximal frequentsequence$rom unstructuredext data.
Becauseof the propertiesof the Ahonen-Mykamethod,it is suit-
ablefor indexing unstructurednusicaldata,aswell. However, the
differentcontext requiressomemodificationsandaddedpartsto the
algorithm.

3. APPLYING TEXT MINING METHODS
TO MUSICAL DATA

Theideaof applyingthe text mining methodto musicalcontexts is
basedon somesimilaritiesbetweermusicalandtext data. Musical
datais comparabléo text for mary reasonén spiteof thedifferences
betweemmusicandlanguagesphenomenaFirst, bothmusicaland
text dataareconsideredo be hierarchical- the sentencesr terms
and musicalphrasesonsistof smallerunits like letters,words or
notes. Second,jn both musicalandtext data,the orderof unitsis
of importance. Third, it is possiblethat thereare someadditional
units betweenthe units of the meaningfulphrase. In music such
additionalunitsareornamentgor example.

Thewaysmusicandlanguagereusedalsohave somesimilarities.
Repetitionis of highimportancean cornversationbut alsoin written
text. Theimportantideas opinionsor factsarestressedby repeating
them with somevariation. Even thoughin music there are no
suchdirectopinionsof facts,repetitionstill hasquite animportant
meaning- repeatingpatternsaareusedasthemesor hooks. Themes
andhooksusuallyoccuralsowith or withoutvariationandareeasily
remembered?2].

In additionto repetitionthe variation and contrastsare also used
whendrawing onesattentionto importantideas.Burns [2] stresses
thatrepetitionactuallyis quite insignificantwithout its counterpart
variation. Themorecontrastinghevariationis, themorelikely it is
to be noticed. However, the purevariationwithout ary repetitionis
correspondinglyneaningless.

When applying a text mining methodto musicaldata,one hasto

take careof theabose-mentionedechnicaldifferencebetweertext

andmusicaldata. Two differentapproachesave beenintroduced
to the processingof the polyphonicdata. The simplerway is to

processeachvoice separately[11]. This approachhowever, does
not find patterns which occur betweendifferentvoices. Another
approachis to give a total orderingon all the notes [9]. In this

approacha suitablegap sould be allowed betweenthe noteitems
whenmatchingthe pattern.

Themultidimensionallatacanberepresentedsingsetsor vectors
[9] thatdescribedataitems. In patternmatchingthe matchedtems
arewhole setsor vectorsinsteadof individual lettersor numbers.
Eventhoughsomedimensionén setsorvedorsmightrepresentime

events, their effect on patternmatchingcan easily be eliminated
calculatingthe distinction betweentwo vectorsor setsinsteadof

usingabsolutevectorsor sets.

Usingsuchcalculatedelative setsor vectorsalsosolvestheproblem
of transpositioninvariance- the similar themesstartingfrom differ-

entpitchesshouldbe recognizedo be the same. Eventhoughthe
absolutepitch valuesof notesarenotthe sametherelationbetween
pitchesstayssimilar. Becausehe relative vectorsrepresenthese
relations themesarerecognizedo betransposesf eachother

4. EXTRACTING PHRASES FROM MUSI-
CAL DATA

The indexing methoddescribedn this papermanage$oth homo-

phonicandpolyphonicdata. In the inner representatiorthe prop-

ertiesof notesarerepresentedsvectordimensions.Thereforethe

algorithmis capableof handlingmary kindsof numericalsymbolic

representationsf music.

The basicideaof the algorithmis to extract maximalfrequentse-
guencedrom the given musicalpieceandsortthemby their prop-
erties. Thesequencesyhicharenotsubsequenceas alreadyfound
maximalsequencesre expandedo be maximal. A maximalfre-

quentsequencés thena sequencewhich appearsat leasto times
in a pieceandwhich is not containedn anothemaximalfrequent
sequence.

The sequencesre repeatedlyconstructedrom shortersequences
until all the sequencesf the samelengthare eithersubsequences
of somemaximal frequentsequencer not frequent. Theremay
be at mosta dataitems betweenitems of sequencegnablingthe
treatmentof the polyphonicdata. Both o (frequeng) anda (gap)
valuesaredefinedby theuser

The extractionalgorithmis basedon the Ahonen-Myka [1] algo-
rithm with someextra phases. The technicalrequirementof the
musicaldatahave alsobeentakencareof. Thealgorithmconsistof

threeparts:thetechnicalpreprocessinghasethediscovery phase,
andthesortingphase.

Thealgorithmtakessymbolicrepresentationsf musicaldata,such
asMIDI, asits inputandusesthe abore-mentionedelative vectors
asits innerrepresentationThe propertiesof the dataitemsthatare
usedasvectordimensionsaredefinedby theuser

4.1 Definitions
DEFINITION 1. K -dimensional relative vector v’ is the dis-
tinction vy —v1 between two k-dimensional vectors v1 and vs.

DEFINITION 2. The relative data set D' is an ordered set
of relative vectors v'.

DEFINITION 3. Phrase p is an ordered set of relative vec-
tors V', having a mazimal gap of o between every sequential
vector v'.

DEFINITION 4. Phrase q is a subphrase of phrase p if each
relative vector v' in q appear in the same order also in p.

DEFINITION 5. Phrase p is frequent in the relative data
set D' if p appears at least in o locations in D', o being the
giwen frequency threshold.

DEFINITION 6. Phrase p is a mazimal frequent phrase in
D', if there does not exist any phrase q which is also frequent
in D' and p is a subphrase of q.

4.2 ConversionPhase

The conversionphasencludescorversionfrom MIDI datato inner

representatiomvhich presentsvery noteasa vector In this phase
theneededelative vectorswithin thelimit of thegapvaluearealso

calculatecandstoredinto thetablestructure.After theconstruction
of the table, the unfrequentrelative vectorsare removed because
they cannotform ary frequentphrase®ither Thetableof frequent

relative vectorsis thenusedin severalsituationsn themainphase.

ALgoriTHM 1. Conversion phase

Input: MIDI file
Output: RVectors
for each note in MIDI file
convert note to a vector v
Vectors := Vectors U v
sort Vectors
for each v; in Vectors
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for each v; in Vectors, v < v; < gap +1
RVectorsfv; [[v;] = vj — v;
Locfv; — v;] := Locfv; —v;] U 4,5
for each v’ in Loc
if |v'| < frequency
remove instances of v’ from RVectors
return RVectors

4.3 Discovery Phase

Thediscovery phasds very similar to the Ahonen-Mykaalgorithm
[1]. Thefirst preprocessinghaseusesthe relative vectortableto
form frequentpairs within the limit of the gapvalue. The found
pairsandtheir locationsarestoredinto the 2-Gramsset.

ALGORITHM 2. Preprocessing

Input: RVectors
Output: 2-Grams
for i := 0 to |[RVectors| — 2
forj:=(i+1)to (i +gap + 1), 5
< |RVectors| — 1
if head := RVectors[i][j] exists
fork:= (G +1)to(j+gap + 1), k
< |RVectors|
if tail := RVectors[jJ[k] exists
pair := (head,tail)
2-Grams[pair] := 1,5,k
for each pair in 2-Grams
if |pair| < frequency
remove pair from 2-Grams
return 2-Grams

Themain phasetakesthe 2-Gramssetasits input. For eachround
of themainloop eachgramin the k-Gramssetis first comparedo
the phrasedn the maximalfrequentphrasesetMax. If the gramis
not a subphrasef ary of the found maximalfrequentphrasest is
thenexpandedo bemaximal. Thefoundmaximalphraseandall of
its locationsarestoredinto the setMax.

If the gramwas alreadymaximal beforethe expansionphaseit is
removed from the k-Gramsset. The remaininggramsare joined
to eachotherto form k£ + 1 sizedgramswhich arethenstoredinto
the new k-Gramsset, the value of k& beingnow increased.When
storingthe gramsinto the set,the unfrequentnewn gramsarebeing
removed. The algorithmstopswhenall of the gramsareremoved
from the k-Gramssetbecausef their unfrequeng or maximality.
The k-Gramssetcanalsobe prunedbeforethejoining phase.

ALGORITHM 3. Main phase

Input: 2-Grams
Output: Max
=2
Maz := ()
while k-Grams is not empty
for each k-gram g
if g is not a subphrase of any m in Max
maz := Ezpand(g)
Maz := Maz U maz
if maz = g
remove g from k-Grams
(k-Grams := Prune(k-Grams))
k-Grams := Join(k-Grams)
=k +1
return Maz

The expansionphasetakes a gram p asits input and repeatedly
searchegor the new frequentgramg, |q| being|p| + 1. Thegram
p canbeexpandedby addingonevectorat the beginning,endor in
the middle of the gram. The possibleexpansionvectorsarefound
from thefrequentrelative vectortable.

ALGORITHM 4. Ezpansion phase

Input: p
Output: p’
repeat
let 1 be |p|
find phrase p’, |p'| =1+ 1, p is a subphrase
of p’
if p’ is frequent
pi=p’
until frequent p’ can not be found
return p

Thejoining phasgoins k sizedgramsto form k + 1 sizedgrams.
Pereachtwo gramsp = au, ..., ar andq = b1, ..., by, thealgorithm
examinesif thesubgramg’ = as, ..., ax andq’ = b1, ..., by are
similar andthenjoins themto form anew grampgq = ax, ..., ak, bg.

Thefrequeny of thenew gramsis examinedattheendof thephase.

ALGORITHM 5. Join

Input: k-Grams
Output: (k + 1)-Grams
for each gram g; = a1, ..., ax
for each gram g; = b1, ..., by
if(w, ey A = bl, aeey bk—l
gram := ai,...,ak,bg
(k + 1)-Grams[gram] := location(gram)
for each gram in (k + 1)-Grams
if [gram| < frequency
remove gram from (k + 1)-Grams
return (k + 1)-Grams

Becausesomeof the gramsmay expandto mary maximalfrequent
phrasesall of thephrasesnaynotbefoundduringthefirst roundof

themainloop. Thereforeonly theunfrequeneindalreadymaximal
gramscanberemovedfromthesetof gramsin everyround. Without
thepruningphasethealgorithmtakes!—1 rounds/ beingthelength
ofthelongesfoundmaximalphrase Whenusingthepruningphase,
theamountof the neededoundsis muchsmaller

Thepruningphasegeneratepereachgramg = as, ..., ax two sets
of phrasesl_.Max andRMax. ThesetLMax consistof themaximal
phraseshathave gramg’ = a1, ..., ax—1 asits subphraseTheset
RMaxisgeneratedimilarly now usingthesubgramg’’ = as, ..., ak.

For eachphrasein LMax the possiblesufixesfor the gramg’ are
extractedandstorednto setLStr. ThesetRStris generatedimilarly
by extractingprefixesfor thegramg’’. Eachcombinatiorof suffixes,
gramandprefixesaretestedagainstthe found maximalphrases f

a new frequentmaximal phraseis found, all of its subphrasesre
examinedandthe k-gramsof thosethat are not subphrasesf ary

maximalphrasearemarked. Whenall thegramsof the setk-Grams
areprocessedgramsthatarenot marked areremovedfrom the set.

ALGORITHM 6. Prune

Input: k-Grams
Output: k-Grams (pruned)
for each g = a1,...,ar in k-Grams
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LMaz = {p|p in Maz and ax, ...,ax—1 is a
subphrase of p}
RMaz = {p|p in Maz and as,...,a is a
subphrase of p}
for each p in LMaz
LStr[g] = {b1,...,bi|a1, ..., ax—1 exists
in p starting from location biy1}
for each p in RMaz
RStrfg] = {bm+1, ..., bnlaz, ..., ax exists
in p ending at location by}
for each s1 in LStr
for each s2 in RStr
s-new = s1 . g. s2
if s-new is not a subphrase of
any m in Max
for each frequent subphrase s
of s-new
if s is not a subphrase of
any m in Mazx
mark each k-gram in s
for each g
if g is not marked
remove g from k-Grams
return k-Grams

4.4 Sorting Phrases

Whenall of themaximalfrequentphrasesrefound,thephrasesre
sortedby their length, frequeng and personality The personality
property measureshe averagedivergencebetweenthe sequential
notes. The idea of personalityis basedon contrasts— the more
contrastingthe sequentiahoteson averageare the more personal
thephrases consideredo be.

Thepersonalityvaluefor eachphrases calculatedusingthe scaled
valuesof eachvectordimension.Thepersonalityof onephrasésthe
averageof the personalityof its vectors: |a11|+"'+|ailk|+---+|ank|
wheren is thelengthof the phrasek the cardinality of the vector
anda;; is the scaledvalue of the jth dimensionof the sth vector
Thetotal ratefor eachphrases calculatedusingthe formula: z *
length + y * frequency + z * personality, x, y, andz beingthe
userdefinedparametersor sorting.

ALGORITHM 7. Sort

Input: Maz
Output: Mazsorted
for each phrase p in Maz
length := |p|
frequency := |locations|
for each vector v = ai,...,an in p
personality := personality + |a1|+...+|an|
personality := personality / length
rate := (z*length + y*frequency +
z*personality)
Mazsorted[rate] := Mazsortedfrate] U p
return Magzsorted

Becausehe numberof found phrasesanbe quite high, depending
ontheanalysediata,t maybeusefulto chooseonly thebestphrases
from the setof all found phrases.The choserphrasecanthenbe
storedinto theindex structure.

4.5 Requirementsfor the Search Algorithms
Thefoundphrase®r somesubsebfthemcanbestorednto asuffix-
treestructure[12] for example.A querycanbe executedusingthe
existing stringmatchingalgorithms.Theform of thefoundphrases,
however, setssomerequirementgor the searchalgorithms.

As mentionedabove, the polyphonicstructureis managedy al-

lowing gapsbetweenthe notesof the phrase. Thereforesomeof

the found phraseanay alsoinclude chordsin additionto melodic
structure.Becausehephrasesrestoredin their entiretythesearch
algorithmshouldbe ableto processsuchpartly polyphonicstruc-
tures,aswell.

4.6 OpenProblems

Oneof themainprinciplesof thealgorithmisto suppordifferentnu-
mericalsymbolicrepresentationsf musicaldata. In this approach
the resultingphrasesandalsothe managingof somepolyphonical
situationsarehighly dependenbn boththe givenrepresentatioof
the dataandthe parametewralues. The orderof the found phrases
depend®ntheusergivenparametersaswell. Themaindravback
in this approachs thatit doesnot useary knowledgeof the order
or type of the given vector dimensionsandthat it is highly user
dependent.

Eventhoughthe personalitypropertyaddssomesemanticsnto the
sortingphasetheideaof contrasor originality hasto beconsidered
further and somenew propertiesaddedinto the sorting formula.
Someother sorting formulas could be addedto the algorithm, as
well.

5. IMPLEMENT ATION AND RESULTS
Thetwo versionswith andwithout pruning,of thealgorithmwere
implementedn Perlandexperimentsverecarriedoutwith theMIDI
databaseonsistingof 130 polyphoniclrish folk musicpieces.The
piecesconsistedf 300-3500notesandthey weredividedinto 11
sizegroups(Table 1). Two of the groups(600 < z < 800 and
800 < z < 1000) were experimentedsystematicallythe others
were usedas comparisonmaterial. The inner presentationvas
formedusingthepitchandstarting-timevalues.Thehardwareervi-
ronmentwasAMD Athlon 1.33GHzwith 512MB of mainmemory

Table 1: The size groups.

| Notes | Pieces |
x < 600 9
600 <z < 800 8
800 < x < 1000 19

1000 < z < 1200 || 19
1200 < z < 1400 || 22
1400 < 2 < 1600 || 11
1600 < z < 1800 || 16
1800 < z < 2000 8
2000 < z < 2200 7
2200 < z < 2400 4
z > 2400 7

The experimentswere also divided into threesets. The first set
of experimentsmeasuredhe easily recognizabldeatureslike the
directeffect of amountof startingpairsandparametergFigures 1
and 2). The secondsetmeasuredhe effects of both parameters
andthe datacontentsandthe third setthe effect of pruningon the
efficiengy of the algorithm. The resultingphrasessortedby their
rateandthetime analysisdatawerecollectedinto aresultfile.

Thefirst setof experimentsvasconductedisingthe versionof the
algorithmwithout pruningphaseandfive differentsetsof parameter
values. The experimentsproved that the parameterdad a direct
effect on the amountof starting pairs (Figure 2) but the exact
amountof notesdid not. However, the averageexecutiontime rose
whenexecutingpiecesof the next sizegroup(Figure 3). Themost
interestingobsenation, however, was that the algorithm had two
differentbehaior models. In caseof somepiecesand parameter
values especiallywhentheamountof startingpairswasquitesmall,
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for examplelessthan200,theamountof the gramsin the k-Grams
set startedto decreasdrom the first round. In other cases,the
amountof gramsfirst increasedndthendecreased.

The Effect of Gap Value on Time (Frequency 20)
180 T T

160 -

140 -

120 -

100 -

Time

Figure 1: The effect of gap value on time in the second
size group

‘The Effect of Gap Value on Starting Pairs (Frequency 20)

“parameters,

Figure 2: The effect of gap value on starting pairs in the
second size group

The Effect of the Amount of Notes on Time (Gap 3, Frequency 20)

“sizegroups” ——

Time (sec)

0 h . L L L L
400 600 800 1000 1200 1400 1600 1800
s

Figure 3: The effect of amount of notes on time

The secondsetof experimentswas also conductedusingthe sim-
pler versionof the algorithm. In this set, both decreasinglyand
increasinglybehaing piecesof secondandthird sizegroupswere
processedsingthesameparametevaluesandtheresultingphrases
were analysed. The resultsproved that the decreasingoehaior
endedup with alarge setof smallphrasesonsistingof only a cou-
ple of notes. Whenthe behaior wasincreasingthe setof phrases
includednoticeablylongerphraseswith additionalsmallerphrases
aswell (Table 2).

Table 2: The length of the phrases in the second and
third size groups with parameter values (10, 20).

| Phrases | Increasing(pieces) | Decreasing(pieces) |
Ave. Length 8 (11) 4 (16)
Longest 20 7

The third set of experimentsmeasuredhe efficiengy of the two
versionf thealgorithm. Ontheaveragehealgorithmwith pruning
phasewastwice asefficient asthe onewithout pruning. In caseof
the decreasindpehaior, however, the versionwithout pruningwas
considerablymoreefficient (Table 3).

Table 3: The average efficiency of the algorithm
in the second size group with and without pruning
phase with parameter values (3, 10).

| || Increasing | Decreasing |

Without Pruning
With Pruning

1.5 min 3 sec
0.5min 6 sec

Eventhoughthe pruningphasewasrelatively slov whenthe algo-
rithm behaed decreasinglyandalsoin situationswhentherewere
mary maximalphrasesvith commonsubphrasesherearestill rea-
sonsfor usingthe phase Onthe averagethe pruningphasespeeded
upthealgorithmconsiderablyAlso thephrasegroduceddy theal-
gorithmwhenbehaing decreasinglyverevery shortandtherefore
useless.

When comparingto the original text mining methodthe behaior

of algorithmwasslightly different. The text phrasesaretypically

much shorterthanthe phraseaisedin musicwhich wasalsoseen
when expandingthe phrases. Further there seemedo be much
morerepetitionin themusicaldatausedascorpusthanin thetext in

general.

The found phraseswvere of threedifferenttypes. The phrasesof
thefirst typewerevery shortconsistingof threeto five noteswhich
typically representeadhordswith one or two extra notes. When
searchinga melody the information consistingmainly of chords
is irrelevant. Thereforethesephrasesare unsuitablefor indexing
purposes.Typically this groupof phrasesvasgeneratedvhenthe
givengapvaluewastoo small.

Thephrase®f thesecondyroupwereconsiderablyongerandcon-
sistedof bothmelodicandharmonicparts. Themostcommonform
of thiskind of aphrasestartedwith a chordfollowed by oneor two
sequentiamelodicnotes. A similar structurewasrepeatedseveral
timesin the phrase. The third group consistedof purely melodic
phrasefiaving approximatelfive to tennotes.

Whenexaminingthe phraseof the secondandthird groupcloser

it wasnoticeablehatmostof the phrasesonsistedf suchrepeat-
ing structureghat could alsobe heardwhenlisteningto the piece.
Thereforethesephraseslsoform the setof the phrasedo bestored
into theindexing structure.

In most casesthe phrasesof the secondand third group had the
highestratevalues,aswell. Still thereis a needfor finding better
sortingformulasfor stressinghefactorsof theratevalue.

Becausedhe behaior of the algorithmandthereforealsothe form

of thefoundphrasesiependegartly onthe parametergivenby the
user the suitableparametervaluesshouldbe determinedfor each
corpusindividually. Thereforethereis alsoa needfor analgorithm
which would analysethe dataanddecidethe bestparametevalues
for eachdata.

6. CONCLUSIONS

This papempresenteadtext mining-basedndexing algorithm,which
extractsrepeatingpatterndrom a symbolicrepresentationf poly-
phonicmusicaldata. The patternsfound arefirst sortedto separate
usefuland unusefulphrases.The bestphrasesanthenbe stored
into theindex structure.
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Althoughthe phenomenaf musicandlanguagearequite different
to eachother especiallytheir use have similar featuresin mary
cases.Further the musicalandtext datahave enoughsimilarities
for also applying the text processingalgorithmsto musical data.
Thereforethe knowledgegainedfrom thetext mining andlanguage
technologyresearcttanalsobe usefulfor further developmentof
MIR methods.
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