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ABSTRACT
A hidden Markov model approach to piano music transcription is
presented. The main difficulty in applying traditional HMM tech-
niques is the large number of chord hypotheses that must be consid-
ered. We address this problem by using a trained likelihood model
to generate reasonable hypotheses for each frame and construct the
search graph out of these hypotheses. Results are presented using a
recording of a movement from Mozart’s Sonata 18, K. 570.

1. INTRODUCTION
We discuss our work in transcribing sampled recordings of piano
music into a MIDI- or piano-roll-type representation. The relevance
of this endeavor to the music information retrieval (MIR) commu-
nity is straightforward: MIDI provides a cartoon-like representation
of musical data that is extremely compact when compared to the
sampled audio data, yet retains the necessary information for many
content based analyses and queries. This work has applications out-
side of MIR such as score-following for computer-human interactive
performance, and is part of a broader research agenda of ours — the
musical “signal-to-score” problem.

Our approach is based on hidden Markov modeling since we believe
that HMMs [1], [2], and, moreover, the ideas of statistical pattern
recognition and statistical machine learning have great potential in
music recognition problems. First of all, a given “state of nature,”
such as a particular voicing of a C major triad, can be realized through
a wide range of data (say e.g. spectral) configurations, depending
on many variables such as the instrument, the room acoustics, the
placement of the microphone, as well as many player-specific vari-
ables. This variability of presentation argues for a probabilistic data
representation in which one models the
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of the data

given the true state of nature. Furthermore, automatically ����� ���������
this probabilistic relationship is inherently more robust and flexible
than optimizing a particular model by “hand-tweaking” the many
parameters. While our preference for learning models from data
is shared by the majority of the machine learning community, we
have arrived at this preference not through “received wisdom” but
rather due to our significant experience hand-tuning various mod-
els. Secondly, musical data is highly structured and any recognition
approach is well-advised to exploit rather than disregard this this
structure. While musical structure can be partly captured in terms
of “rules,” an examination of data of reveals that the rules can be
more accurately represented as tendencies and are easiest to capture
in a probabilistic framework. For this reason we propose learning
musical structure by training a probabilistic model from musical
score data, rather than imposing any specific assumptions ��� �	�����	� .
Integral to the HMM methodology is a probabilistic representation
of data and the desired interpretation, as well as much need compu-
tational machinery for training and recognition.
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Early work on automatic music transcription did not emphasize any
clear methodological framework and addressed significantly scaled-
down transcription problems as in [3], [4], [5]. More recently
several authors have demonstrated progress in polyphonic music
recognition using so-called “blackboard systems” which attempt to
fuse bottom-up and top-down recognition schemes, [6], [7], [8]. [9]
describes a system in which prior information is incorporated into
a graphical model at multiple levels in the graph’s hierarchy, but
relies on the computationally intensive simulated annealing method.
Certainly among the most successful transcription results are those
of Klapuri [10], [11]. Hidden Markov models (and approaches with
very similar spirit) have found applications in score following in
[12], [13], [14] and [15]. Additionally HMMs have been applied
to monophonic music recognition as in [16]. The HMM approach
to transcription is formally quite similar to these two applications
except that the state space is larger by several orders of magnitude.

2. THE MODEL
Our approach begins by segmenting the acoustic signal into a se-
quence of frames, each corresponding to about a short “snapshot”
of sound. From each of these frames we compute a collection of
features which reduce the dimension of the data significantly, while
still retaining the necessary information for interpreting the data.
We denote these feature vectors as ���! #"#"�"# ��%$ . The precise features
we use will be discussed later.

Our goal is to assign a label to each of these frames describing the
frame’s content. The most important aspect of the label is the current
collection of sounding pitches, however, we will introduce several
“flavors” for each collection in what follows. Our approach is model-
based. We form a generative probabilistic model, a hidden Markov
model, whose output is the observed sequence of features vectors
�
�! #"#"#"� ��%$ and whose hidden variables, the labels, correspond to
the interpretation we seek.

A hidden Markov model is composed of two process we denote by&(')& �  #"!"#"� & $ and * ' * �  �"#"#"! �* $ . The
&

process is the
“hidden” process or “label” process and describes probabilistically
the way a sequence of frame labels can evolve and is assumed to
be a Markov chain. Of course, we do not observe the

&
process

directly, but rather observe our feature vector data. The HMM model
assumes that the likelihood of a given feature vector depends only
on the corresponding label. These assumptions will be made more
precise in the following.

2.1 The Label Process
Our goal is to assign a label to each frame of data where each label
comes from set of possible values + . The most important component
in the label is the pitch configuration or “chord.” If we denote the
possible notes under consideration as , '.-�/ �# �"!"#"# /1032 then, in
principle, any of the 4

0
possible subsets of , , 5768,:9 , correspond to

possible chords. Clearly the space of possible chords is enormous.
In addition the label contains information that distinguishes between
the “attack,” “sustain,” and “rest” portions of a chord. In particular,
if we take ; '<-

atck-1  atck-2  sust-1 "#"#" sust-K  rest-1 "#"�" rest-K
2
.

The label set is then

+ '<- 6>=? �@?9BA�=�CD5768,:9	 E@FCG; 2
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A more sophisticated model might allow for the association of a
flavor (attack, sustain, etc.) for each chord note; in our work here
we have opted for the computationally simpler version presented.

We define a random process — a Markov chain —
& �  #"#"�"# & $

taking values in the label set + . The fundamental assumption of
a Markov chain is that the probability of the process occupying a
certain state (label) in a give frame depends only on the preceding
state (label):

, 6 &JILK � 'NM0OFP &
I
� '(M

I
� 9 ' , 6 &JILK � 'QM0ORP &SI '(M 9T;UWV' / 6 M O P M 9

where
/ 6 M O P M 9 is the transition probability matrix and

& I� is defined
here by

& I� ' 6 & �! #"#"!"# & $ 9 . We will choose
/ 6 M O P M 9 to incorpo-

rate relevant information about the way the label process can evolve.
For instance, there is a minimum possible duration for a note. Ad-
ditionally, certain transitions between chords are more likely than
others. The top panel of Figure 1 shows a graph structure depicting
the transitions with nonzero probability for a single chord. While
the following construction would not be computationally feasible,
conceptually the recognition phase of our approach builds such a
model for every possible chord and connects the final states of each
chord model to the initial state of each chord model. A silence
model is constructed to account for the recorded space before and
after the performance and are connected as in the middle panel of
Figure 1.

Due to the overwhelming size of the state space, an enormous num-
ber of possible data interpretations exist. Wherever possible, we
have attempted to choose transition probabilities that will guide our
recognition toward � � ���8����� more plausible hypotheses. For in-
stance, we can choose the probability distributions associated with
the transitions in the top panel of Figure 1 to reflect a plausible or
learned probability distribution on the number of frames spent in a
particular note. In addition, we will learn a model for chord tran-
sition probabilities from actual score data which we impose on our
recognition graph.

2.2 The Observable Process
Rather than observe the label process directly,

M �# #"!"#"# M $ , we ob-
serve our feature vector data � �  #"!"#"# �� $ , which are probabilistically
related to the labels. The assumption of the hidden Markov model
is that each visited state,

&SI
, produces a feature vector, * I , from

a distribution that is characteristic of that state. More precisely, we
assume

, 6�* I ' � P & $� '(M $ � 9 ' , 6�* I ' � P & I 'QM 9T;UWV' / 6�� P M 9
thus, given

& I
, * I is conditionally independent of all other frame

labels and all other feature vectors. While the fundamental assump-
tions of the HMM simplify our situation considerably, the repre-
sentation and training of the output distributions,

/ 6�� P M 9 , is further
simplified by two more assumptions.

First of all, recall that we compute a X��ZY �>��� of features for each
frame of data � ' 6�� �  #"#"#"# �0[ 9 . We assume that the components
of this vector are conditionally independent given the state so that/ 6�� P M 9 ']\ [^;_ � / 6�� ^ P M 9 . Furthermore, the states are tied so that
many different states share the same feature distributions. That is/ 6�� ^ P M 9 ' / 6�� ^ P ` ^ 6 M 9�9 where the tying function

` ^ 6 M 9 is con-
structed by hand. Thus we have

/ 6�� P M 9 ' [a
^;_ �

/ 6�� ^ P ` ^ 6 M 9�9

The nature of the tying function
` ^ 6 M 9 can be clarified by describ-

ing more explicitly the features that we compute. First of all, we
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need to be able to distinguish between the times when the pianist
plays and when there is silence, so we compute a feature � � that
measures the total energy in the signal. Most the states, + , of our
model correspond to various note configurations where we expect
the energy content to be relatively high. However both the first and
last states of the model, which describe the silence before and after
the performance, as well as the “rest” states that represent space
that can occur between notes, model situations in which we energy
content will tend to be lower. We let

` � 6 M 9 '��
for the silence

and rest states, and
` � 6 M 9 '��

for the remaining states. Thus we
must learn two probability distributions:

/ 6�� ^ P ` � 6 M 9 '�� 9 and/ 6�� ^ P ` � 6 M 9 '�� 9 for each of these two cases. The particular values
of 0 and 1 are not relevant; the only important issue is the parti-
tion of the label set generated by

` � 6 M 9 : -9M C + A ` � 6 M 9 '��%2
,-+M C3+ A ` � 6 M 9 '�� 2

.

We also need to distinguish between note “attacks” and steady state
behavior if we have any hope of detecting rearticulations. For this
reason we compute a feature ��� that measures the local “bursti-
ness” of the signal. Many different measures are possible including
differenced energies and differenced spectral energies summed over
various regions in frequency space. Our feature �	� computes several
such measures of burstiness ( � � is a vector). For this feature, states
can be partitioned into three groups: the states at the beginning of
each note where we expect the signal to have high burstiness, for
which we set

` � 6 M 9 '
�
; the states corresponding to steady state be-

havior where we expect the burstiness to relatively low, for which we
set
` � 6 M 9 '��

; and the silence states where the burstiness measure
will have a third type of behavior for which we set

` ��6 M 9 ' 4 .
The remainder of our features are concerned with the most funda-
mental problem of distinguishing between the many possible pitch
configurations. Each of the features �
�� #"!"#"� ���[ is computed from a
small frequency interval of the Fourier transformed frame data. For
each such window we compute the empirical mean and empirical
variance when the spectral energy function, restricted to the win-
dow, is normalized as a probability distribution. The mean value
will estimate the location of the harmonic, (when there is a single
harmonic in the window), and the variance can be used to distin-
guish (probabilistically) between when there is a single harmonic
(low variance) and when there is not (high variance). For every
configuration of notes we can compute ideally where harmonics
will lie in the spectrum. We will tie states that should have similar
behavior in a frequency window. For instance, if

M CD+ corresponds
to a configuration in which none of the notes contain energy in the
window indexed by feature � , then

` ^ 6 M 9 '��
. Similarly, we have

chosen to collect together the states having several harmonics in the
window by letting

` ^ 6 M 9 '��
for these states. The remaining states

are partitioned by
` ^ 6 M 9 into groups having a single harmonic at

approximately the same frequency in the window. That is, the col-
lection of states

-9M C + A ` ^ 6 M 9 '���2 all have a single harmonic in
the � th window at approximately the same location.

Note that we have represented millions of state-conditional distri-
butions in terms of a small number of “basis” distributions.

3. TRAINING THE MODEL
One of the most important virtues of the HMM formulation is that the
probability distributions can be trained in an

������� � � � X ��� � � fashion.
This means that we do not need to hand-label frames from all of the
different probability distributions described in the previous section.
Rather, an iterative procedure, known as the forward-backward or
Baum-Welch algorithm, allows us to automatically train from signal-
score pairs. Thus, the training assumes that we have a musical score
for each sound data file, and therefore we know the approximate
sequence of pitch configurations realized in the data, as well as the
approximate durations of those configurations. However, we do not
have the correspondence between states and frames that would allow

a simple-minded training procedure for the output distributions.

When the score is known, we can build a model for the hidden
process using the template in Figure 1 (bottom). The algorithm
begins from a neutral starting place — we begin with uniformly
distributed output distributions — and iterates the process of find-
ing a � ��� 
 � 
�� � ������� Y correspondence between model states and data
frames and then retraining the probability distributions using this
correspondence.

More precisely, the forward-backward algorithm allows us to com-
pute the � � ��� � ���8��� distributions , 6 & I ' M3P * � ' � � "#"�"�* $ '
� $ 9 . If this distribution concentrated is mass on a single state,

M
,

then it would be reasonable to use the data frame � I as an example
of
/ 6�� P M 9 . In the more typical case in which the posterior distribu-

tion allow for several possible states, we consider � I as a fractional
example of

/ 6�� P M 9 where the fraction is the posterior probability
, 6 &JI '�M>P * � ' � � "#"#"�* $ ' �%$ 9 . The fractional examples are
then used to retrain the output distributions by computing empirical
probabilities of the various observables.

Our output distributions on feature vectors are represented through
decision trees as follows. For each distribution

/ 6�� ^ P ` ^ 6 M 9�9 we
form a binary tree in which each nonterminal node of the tree cor-

responds to a question of the form � ^�� ������
where � ^�� � is the � th

component of feature � . An observation � ^ can be associated with
a terminal node by “dropping” the observation down the tree. That
is, starting at the root we evaluate the root question and move to
the left or right subtree as the answer is yes or no. This process
is continued until we arrive at terminal node which we denote by� ^ 6�� ^ 9 . Thus the decision trees quantize the data vectors, and to be
precise, the quantized values

- � ^ 6�� ^ 9 2 are the actual features we
use. As the training procedure evolves, the trees are reestimated at
each iteration to be progressively produce more informative proba-
bility distributions by maximizing the mutual information between
the terminal node

� ^ 6�� ^ 9 and the class label
` ^ 6 M 9 . Thus we seek

to build trees which would function well at predicting the class label` ^ 6 M 9 of a vector � ^ , although we do not use them for this purpose.

4. RECOGNITION
The traditional HMM approach to recognition seeks the most likely
labeling of frames, given the data, through dynamic programming:

�M $ � '
����� �!��"
#%$& , 6 & $� '(M $ � P * $� ' � $� 9

where
�M $ � ' 6 �M �� #"#"#"# �M $ 9 . This corresponds to finding the best

path through the graph of Figure 1 (middle) where the reward in
going from state

M�I(' � to
M�I

in the ) th iteration is given by
* I 6 M I+' �  M I 9 ' / 6�� I P M I 9 / 6 M I P M I(' � 9

A well-known recursion, the Viterbi algorithm, incrementally con-
structs the optimal paths of length ) from the optimal paths of
length )-, �

. The computational complexity of full-fledged dy-
namic programming grows with the square of the state-space which
is completely intractable in our case: Under restrictive assumptions
on the possible collection of pitches and the number of notes in a
chord, the state space is on the order of

�.�0/
. Even with standard

pruning techniques, the conventional conception of DP is completely
hopeless with a state space so large.

Instead, we use the data model constructed in the training phase to
produce a greatly condensed version of the state graph of Figure
1 (middle). For each frame, ) , we perform a greedy search that
seeks a plausible collection of states

M C + for that frame. This
is accomplished by searching for states

M
giving large values to/ 6�� I"P M 9 . The search is performed by finding the mostly likely

1-note hypotheses, then considering 2-note hypotheses formed by
adding single notes to the best 1-note hypotheses, and so on. Thus
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each frame, ) , will be associated with a possible collection of states� I
. The states are “blended” by letting � I7'�� ILK��^;_ I('�� � ^ represent

the collection of states we will entertain at the ) th frame. Then the
state graph is constructed by restricting the full graph of Figure 1
(middle) to the � I sets.

The principal disadvantage of such an approach is that if the “true”
state at frame ) is not captured in � I , then it cannot be recovered
during recognition. However, the approach is computationally fea-
sible. We are currently exploring an extension of the above idea in
which, for each frame ) , we seek hypotheses

M C + maximizing/ 6 M3P � I 9 where

/ 6 M>P � I 9 '
/ 6�� ICP M 9 / 6 M 9/ 6�� I 9

To this end we learn a distribution on states
/ 6 M 9 , mostly depend-

ing on the chord configuration, from actual score data. Thus the
original identification of possible hypotheses is guided toward more
plausible configurations. A particularly valuable contribution of this
modification is that the “prior” distribution

/ 6 M 9 helps to distinguish
between chord configurations we deem “homonyms” — these are
chords that are indistinguishable to our data model

/ 6�� P M 9 . Exam-
ples of chord homonyms are chords differing by the inclusion of an
octave or 12th above any of the chord notes.

5. EXPERIMENTS
We present here preliminary experiments on several movements
from Mozart piano sonatas. The results presented here are derived
from a performance of the 3rd movement of Sonata 18, K. 570. Both
the original data and a MIDI file of our recognition results can be
heard heard at �	�
����
 ���	���	��������������� ���"!#����$%$&� �&'(!���) $��*)"�,+�- .

We restricted our attention to notes falling in the true range of the
movement, from c two octaves below middle c to f two and a half
octaves above middle c. Also consistent with the actual movement,
we considered only chords containing four or less notes.

We trained our HMM in the manner described using data also taken
from various Mozart piano sonata movements recorded under similar
conditions.

While the MIDI file on the web page is likely the easiest description
of our level of success to understand, it only allows for subjective
comparisons. For this reason we have also performed an objec-
tive measure of performance we describe now. Such a measure is
essential in developing a recognition system since it allows one to
objectively evaluate the consequences of a system modification.

The “Word Error Recognition Rate” is a common measure of system
performance used in speech recognition. The essential idea is to
compute the minimum “edit distance” — the minimum number
of insertions, deletions and substitutions necessary to transform the
recognized word sequence into the true word sequence. Recognition
error rates are often reported as

Error Rate
' � � �/. Insertions 0 Deletions 0 Substitutions

Total Words in Truth Sentence

We will use the same convention.

In computing the minimum edit distance we take the sequence of rec-
ognized chords ordered by note onset time with each chord spelled
in arbitrary order as our recognized data. Thus, for the purposes
of computing the error rate, the recognized data is collapsed into
a string of notes. Conceptually, we convert the score also into a
sequence of pitches, however our “matching” algorithm considers
all )21 permutations of each ) -note chord in the score. Thus, if
the score contained a single triad chord, any recognition of two of
the triad notes, (as a chord or in any sequence), would produce a
single deletion error. This computation can be performed with a
small variation on the usual dynamic programming computation of

minimum edit distance. The data above yielded a “note error rate”
of 39% with 184 substitutions, 241 deletions, and 108 insertions out
of 1360 notes.

In computing the recognized sequence of pitches, if two adjacent
recognized chords have a pitch in common, it is assumed that the
note is not rearticulated. This assumption is correct most of the
time and our current model does not have the ability to detect any
possible combination of rearticulations. The dominance of deletions
in our recognition results is partly due to deletions caused by this
simple-minded assumption.

A second significant contributor to both the number of deletions is
our inability to distinguish between chord homonyms. In our initial
generation of chord hypotheses we consider only the homonym
with the least number of notes; thus we do not allow a note to
be added to a chord hypothesis if it does not generate any new
harmonics. As discussed above, the algorithm cannot recover from
errors committed at this stage, due to the need to keep the search
space manageable.

6. DISCUSSION
While our recognition results leave room for improvement, it should
be noted that our current system was devised as a relatively sim-
ple modification of an earlier HMM system used for 3 ��� � �54 � ��� Y
recognition of a 6 � ��7 � score. Results of this quality might already
be useful in a number of Music Information Retrieval applications
tolerant of errorful representations.

We expect, however, that some simple additions may yield substan-
tial gains in performance. For instance, the current system works
with nearly no knowledge of the plausibility of various sequences
of chords. We are currently working on developing a probabilistic
model, trained from real music data, that models the likelihood of
chord sequences. Such models provide dramatic improvement in
other HMM domains. Additionally, our current system makes al-
most no effort to model the acoustic characteristics of the highly
informative note onsets. We hope that a more sophisticated “attack”
model would help in recognizing the many repeated notes which our
system currently misses.
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